期刊文献+

SnO_2空心壳球材料及其碳包覆物的制备与性能表征 被引量:3

Preparation and Characterization of SnO2 Hollow Spheres and Their Carbon-coated Composites
下载PDF
导出
摘要 采用水热合成法以SiO2微球为模板制备了SnO2空心壳球材料,并对其进行了碳包覆改性。采用XRD和SEM表征了所得材料的结构和表面形貌,并进一步研究了所得材料作为锂离子电池电极材料的电化学性能。XRD和SEM结果表明,所制备的SnO2空心壳球材料为四方相金红石结构,不含其它杂质,呈不规则壳球状形貌,经过碳包覆后呈规则球状,并且粒径变大;充放电和电化学阻抗谱结果显示,SnO2空心壳球材料首次充电容量达933mAh/g,80周循环以后可逆容量为382mAh/g;经过碳包覆的SnO2空心壳球材料,首次充电容量为908mAh/g,80周循环以后可逆容量仍高达654mAh/g,表明碳包覆可显著改善其电化学循环稳定性,这主要归因于碳包覆能够降低材料的界面阻抗。 A facile one-pot hydrothermal method, using SiO2 microspheres as a template, was developed to pre pare SnO2 hollow spheres and their carbon-coated composites. Their structure, morphology and electrochemical performance were investigated by XRD, SEM, discharge-charge test and electrochemical impedance spectroscopy. The XRD results show that SnO2 hollow spheres are tetragonal futile structure, without any inpurity. The SEM results show that the morphology of SnO2 appeared irregular spherical shell structure. After being coated by carbon, the spheres became larger than that of the oringin irregular balls with a relatively regular size. The results of discharge charge test and electrochemical impedance spectroscopy indicate that the first charge specific capacity of SnO2 hollow spheres reaches to 933mAh/g, which remains 382mAh/g after 80 circles. After being coated by carbon, the first charge specific capacity is 908mAh/g, which remains 654mAh/g after 80 circles, displaying that carbon coating can significantly improve SnO2 hollow spheres' electrochemical performance, due to the decrease of interface impedance of the materials by carbon coating.
出处 《材料导报(纳米与新材料专辑)》 EI CAS 2011年第2期310-313,共4页
基金 中央高校基本科研业务费专项资金(2010LKHX03 2010QNB04 2010QNB05) 中国矿业大学科技攀登计划(ON090237)
关键词 锂离子电池 SNO2 水热法 碳包覆 lithium ion batteries, SnO2, hydrothermal method, carbon coating
  • 相关文献

参考文献15

  • 1Lou Xiongwen, Deng Da, JimYang Lee, et al. Preparation of SnO2/carbon composite hollow spheres and their lithium storage properties[J]. Chem Mater, 2008,20(20): 6562.
  • 2Tarascon J M, Arrnand M. Issues and challenges facing rechargeable lithium batteries[J]. Nature, 2001,414 :359.
  • 3Lou Xiongwen, Li Changming, Lynden A Archer. Designed synthesis of coaxial SnO2 @ carbon hollow nanospheres for highly reversible lithium storage [J]. Adv Mater, 2009, 21 (24) : 2536.
  • 4Lou Xiongwen, Yuan Chongli, Lynden A Archer. Shell-by- shell synthesis of tin oxide hollowColloids with nanoarchitectured walls: Cavity size tuning and functionalization[J]. Small,2007,3(2) :261.
  • 5MinSik Park, YongMook Kang, Dou Shixue, et al. Reduction-free synthesis of carbon-encapsulated SnO2 nanowires and their superiority in electrochemical performance[J]. J Phys Chem C, 2008,112(30) : 11286.
  • 6Deng Da, Jim Yang Lee. Hollow core-shell mesospheres of crystalline SnO2 nanoparticle aggregates for high capacity Li^+ ion storage[J]. Chem Mater, 2008,20(5) : 1841.
  • 7赵铁鹏,高德淑,李朝晖,雷钢铁,周姬.作为锂离子电池负极材料的三维有序大孔SnO_2的制备及表征[J].化学学报,2009,67(1):1-5. 被引量:10
  • 8Wang Guoxiu, Wang Bei, Wang Xianlong, et al. Sn/graphene nanocomposite with 3D architecture for enhanced reversible lithium storage in lithium ion batteries[J]. J Mater Chem, 2009,19: 8378.
  • 9SeungMin Paek, EunJoo Yoo, Itaru Honma. Enhanced cyclic performance and lithium Storage capacity of SnO2/graphene nanoporous electrodes with three-dimensionally delaminated flexible structure[J]. Nano Lett, 2009,9 (1): 72.
  • 10Werner Stober, Arthur Fink, Ernst Bohn. Controlled growth of monodisperse silica spheres in the micron size range[J]. J Colliod Interf Sci, 1968,26 (1): 62.

二级参考文献22

  • 1王承位,高德淑,丁燕怀,刘黎,蒋晶.熔融法合成层状锰酸锂及改性研究[J].湘潭大学自然科学学报,2006,28(4):57-60. 被引量:6
  • 2高晓红,张登松,施利毅,方建慧,曹为民.碳纳米管/SnO_2复合电极的制备及其电催化性能研究[J].化学学报,2007,65(7):589-594. 被引量:15
  • 3Wang, Z. Y.; Ergang, N. S.; Al-Daous, M. A.; Stein, A. Chem. Mater. 2005, 17, 6805.
  • 4Sadakane, M.; Horiuchi, T.; Kato, N.; Takahashi, C.; Ueda, W. Chem. Mater. 2007, 19, 5779.
  • 5Sorensen, E. M.; Barry, S. J.; Jung, H. K.; Rondinelli, J. R.; Vaughey, J. T.; Poeppelmeier, K. R. Chem. Mater. 2006, 18, 482.
  • 6Fu, L. J.; Zhang, T.; Cao, Q.; Zhang, H. P.; Wu, Y. P. Electrochem. Commun. 2007, 9, 2140.
  • 7Li, M.; Lu, Q. H.; NuLi, Y. N. Electrochem. Solid-State Lett. 2007, 10(8), K33.
  • 8Lou, X. W.; Wang, Y.; Yuan, C.; Lee, J. Y.; Archer, L. A. Adv. Mater. 2006, 18, 2325.
  • 9Ahn, H. J.; Choi, H. C.; Park, K. W.; Kim, S. B.; Sung, Y. E. J. Phys. Chem. B 2004, 108, 9815.
  • 10Zhao, L.; Yosef, M.; Steinhart, M.; Goring, P.; Hofmeister,H.; Gosele, U.; Schlecht, S. Angew. Chem. Int. Ed. 2005, 45, 311.

共引文献9

同被引文献90

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部