期刊文献+

一种基于积分直方图的粒子滤波跟踪方法

An Integral Histogram-based Particle Filtering Tracking Method
下载PDF
导出
摘要 用积分直方图技术提出了一种低复杂度的粒子滤波跟踪方法和基于积分颜色直方图的观测似然模型.采用积分方向直方图建立一个检测响应图,用其上的观测信息构建建议分布函数,在状态空间中似然概率较大的子空间中进行粒子采样.仿真结果表明,在采用大量粒子跟踪大目标时,提出的跟踪方法的计算复杂度明显低于直方图直接提取的粒子滤波方法,而且在光照变化的条件下,比采用传统颜色Mean-Shift的跟踪方法准确. A particle filtering tracking method is presented with low computational complexity using integral histogram technique.Integral orientation histogram is adopted for the construction of a response map.Based on this response map,a proposal is constructed such that particles are drawn from regions of the state space with high likelihood.Also,an integral color histogram-based likelihood model is proposed.Simulation results show that the proposed tracking method has lower computational complexity than that using straightforward histogram extraction method when using large number of particles for tracking large objects.The results are much accurate compared with that using traditional color Mean-Shift method under illumination change conditions.
出处 《光子学报》 EI CAS CSCD 北大核心 2011年第11期1761-1766,共6页 Acta Photonica Sinica
基金 国家重点研究发展计划(No.2009CB724005)资助
关键词 视觉跟踪 粒子滤波 建议分布函数 积分直方图 颜色直方图 方向直方图 Visual tracking Particle filtering Proposal distribution Integral histogram Color histogram Orientation histogram
  • 相关文献

参考文献16

  • 1COMANICIU D,RAMESH V,MEER P.Real-time tracking of non-rigid objects using Mean-Shift[C].Proceedings of International Conference on Computer Vision and Pattern Recognition,2000(2):142-149.
  • 2温静,李洁,高新波.一种结合粒子滤波和张量子空间的目标跟踪算法[J].光子学报,2010,39(6):1047-1052. 被引量:3
  • 3WU B,NEVATIA R.Detection and tracking of multiple,partially occluded humans by bayesian combination of edgelet based part detectors[J].International Journal of Computer Vision,2007,75(2):247-266.
  • 4OKUMA K,TALEGHANI A,DEFREITAS N,et al.A boosted particle filter:Multitarget detection and tracking[C].Proceedings of 8th European Conference on Computer Vision,2004,1:28-39.
  • 5刘洋,李玉山,张大朴,邱家涛.基于动态目标建模的粒子滤波视觉跟踪算法[J].光子学报,2008,37(2):375-380. 被引量:11
  • 6YANG C,DURAISWAMI R,DAVIS L.Fast multiple object tracking via a hierarchical particle filter[C].Proceedings of 10th IEEE International Conference on Computer Vision,2005(1):212-219.
  • 7WU Y,WANG J Q,LU H Q.Robust Bayesian tracking on Riemannian manifolds via fragments-based representation[C].Proceedings of ICASSP,2009,1:765-768.
  • 8CHAI Y J,SHIN S H,CHANG K,et al.Real-time user interface using particle filter with integral histogram[J].IEEE Transactions on Consumer Electronics,2010,56(2):510-515.
  • 9QIU J T,LI Y S,CHU X Q.Efficient head tracking using an integral histogram constructing based on sparse matrix technology[C].Proceedings of ACCV 2010 Workshops,2010,LNCS6468(Part Ⅰ):256-265.
  • 10邹卫军,龚翔,薄煜明.自适应分层采样辅助粒子滤波在视频跟踪中的应用研究[J].光子学报,2010,39(3):571-576. 被引量:5

二级参考文献30

  • 1辛云宏,杨万海.IRST系统的单站机动目标跟踪算法研究[J].光子学报,2004,33(9):1131-1135. 被引量:8
  • 2雷云,丁晓青,王生进.嵌入粒子滤波中的AdaBoost跟踪器[J].清华大学学报(自然科学版),2007,47(7):1141-1143. 被引量:7
  • 3PITT M, SHEPHARD N. Filtering via simulation: auxiliary particle Iihers [ J ]. Journal of the American Statistical Association, 1999,94(446) : 590-599.
  • 4SHEN C H, VAN DEN ANTON H, BROOKS M J, et al. Enhanced importance sampling: unscented auxiliary particle filtering for visual tracking [ C]. Proceedings of Australian Conference on Artificial Intelligence, Cairns, Australia, 2004, 3339: 180 -191.
  • 5CHANG C, ANSARI R. Kernel particle filter for visual tracking [J]. IEEE Signal Processing Letters, 2005,12 (3): 242 -245.
  • 6COMANICIU D, RAMES V, MEER P. Kernel-based object tracking[J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 2003,25(5) :564-577.
  • 7SHAN Cai feng,TAN Tie-niu,WEI Yu-cheng. Real-time hand tracking using a meanshift embedded particle filter[J]. Pattern Recognition,2007,40(7) :1958 -1970.
  • 8ZHANG Bo, TIAN Wei-feng, JIN Zhi-hua. Head tracking based on the integration of two different particle filters[J]. Measurement Science and Technology, 2006, 17 ( 11 ) : 2877- 2883.
  • 9NAIT-CHARIF H,MCKENNA S J. Tracking poorly modeled motion using particle filters with iterated likelihood weighting [C]. Proceedings of Asian Conference on Computer Vision, Korea,2004,4(1) :156 161.
  • 10BLACK M J,JEPSON A D.EigenTracking:Robust matching and tracking of articulated objects using a view based representation[J].IJCV,1998,26(l):63-84.

共引文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部