期刊文献+

基于非局部权值先验和GPU加速的3D低剂量CT成像 被引量:2

Three-dimensional low-dose CT volume reconstruction based on non-local weights optimization and GPU acceleration
下载PDF
导出
摘要 在肿瘤监测和放疗计划制定中,需要多次CT扫描,其使用的X射线辐射剂量已受到广泛关注。为了获得高质量的低剂量CT图像,本文提出一种基于非局部权值先验和GPU加速的3D低剂量CT成像新方法。源于非局部均值滤波(NLM)思想,本文方法采用先前标准剂量CT扫描图像构建用于低剂量CT图像重建的全新非局部均值滤波。具体而言,本文方法首先将3D标准剂量图像与低剂量图像进行配准以减少两图像数据间解剖结构的不一致性,接着利用两配准后的图像构建NLM权重先验,最后采用全新的非局部平均实现高质量的低剂量CT成像。为了增加本文方法的执行效率,GPU硬件加速技术被采用。实验结果表明,本文方法较传统NLM滤波在低剂量图像的噪声消除和细节信息保持两方面均有优势显著且执行效率大幅提升。 Concerns have been raised over x-ray radiation dose associated with repeated computed tomography(CT) scans for tumor surveillance and radiotherapy planning.In this paper,we present a low-dose CT image reconstruction method for improving low-dose CT image quality.The method proposed exploited rich redundancy information from previous normal-dose scan image for optimizing the non-local weights construction in the original non-local means(NLM)-based low-dose image reconstruction.The objective 3D low-dose volume and the previous 3D normal-dose volume were first registered to reduce the anatomic structural dissimilarity between the two datasets,and the optimized non-local weights were constructed based on the registered normal-dose volume.To increase the efficiency of this method,GPU was utilized to accelerate the implementation.The experimental results showed that this method obviously improved the image quality,as compared with the original NLM method,by suppressing the noise-induced artifacts and preserving the edge information.
出处 《南方医科大学学报》 CAS CSCD 北大核心 2011年第12期1974-1980,共7页 Journal of Southern Medical University
基金 国家自然科学基金(81101046 81000613) 国家"973"重点基础研究发展计划项目(2010CB732503) 国家科技支撑计划项目(2011BAI12B03) 广东省科技计划项目(2011A030300005)~~
关键词 低剂量CT 正常剂量CT 图像重建 非局部均值滤波 GPU low-dose CT normal-dose CT image reconstruction non-local means GPU
  • 相关文献

参考文献21

  • 1Fitzgerald R, Twiss D, Mehra R, et al. Low-dose computed tomography surveillance of patients with testicular turnouts[J]. Clin Oncol (R Coil Radiol), 2004, 16(2): 158.
  • 2Tarin TV, Sonn G, Shinghal R. Estimating the risk of cancer associated with imaging related radiation during surveillance for stage I testicular cancer using computerized tomography[J]. J Urol, 2009, 181(2): 627-32.
  • 3Donnelly LF, Emery KH, Brody AS, et al. Minimizing radiation dose for pediatric body application of single-detector helical CT [J]. AJR, 2001, 176(2): 303-6.
  • 4Kalender WA, Wolf H, Suess C. Dose reduction in CT by anatomically adapted tube current modulation. Ⅱ. Phantom measurements[J]. Med Phys, 1999, 26(11): 2248-53.
  • 5Naidich DP, Marshall CH, Gribbin C, et al. Low-dose CT of the lungs: preliminary observations IJ~. Radiology, 1990, 175(3): 729-31.
  • 6Roebuck D J, Metreweli C. Radiation risk in CT for acute abdominal pain[J]. Radiology, 1998, 209(1): 287-8.
  • 7Rust GF, Aurich V, Reiser M. Noise/dose reduction and image improvements in screening virtual colonoscopy with tube currents of 20 mAs with nonlinear Gaussian filter chains EJ]. Proc SPIE, 2002, 4683: 186-97.
  • 8Mendrik AM, Vonken E J, Rutten A, et al. Noise reduction in computed tomography scans using 3-D anisotropic hybrid diffusion with continuous switch[J]. IEEE Trans Med Imaging, 2009, 28(10): 1585-94.
  • 9Kelm ZS, Blezek D, Bartholmai B, et al. Optimizing non-local means for denoising low dose CT [C]//Biomedical Imaging: From Nano to Macro, 2009. ISBI '09. IEEE International Symposium on,2009:662-5.
  • 10Hsieh J. Adaptive streak artifact reduction in computed tomography resulting from excessive x-ray photon noise[J]. Med Phys, 1998, 25 (11): 2139-47.

二级参考文献19

  • 1赵永明,张素,陈亚珠.非介入式手术导航中医学图像配准算法[J].计算机辅助设计与图形学学报,2005,17(12):2665-2669. 被引量:2
  • 2杨伦标 高英仪.模糊数学-原理及应用[M].广州:华南理工大学出版社,..
  • 3Barbara Z,Jan F.Image registration methods:A survey[J].Image and Vision Computing,2003,21 (11):977-1000.
  • 4Rohr Sriehl H S.Landmark-based elastic registration using approximating thin-plate splines[J].IEEE Trans on Medical Imaging,2001,20 (6):526-534.
  • 5Agostino E D,Maes F.A viscous fluid model for multimodal non-rigid image registration using mutual information[J].Medical Image Analysis,2003,7(4):565-575.
  • 6Gustavo K Rohde,Akram Aldroubi.The adaptive bases algorithm for intensity-based nonrigid image registration[J].IEEE Trans on Medical Imaging,2003,22 (11):1470-1480.
  • 7Wang Y.Smoothing spline models with correlated random error[J].Journal of the American Statistical Association,1998,93:341-348.
  • 8Goshtasby A.Piecewise linear mapping functions for image registration[J].Pattern Recognition,1986,19 (6):459-466.
  • 9Collignon A,Maes F.Automated multi-modality image registration based on information theory[J].Computational Imaging and Vision,1995,3:263-274.
  • 10Viola P,Wells W M.Alignment by maximization of mutual information[J].International Journal of Computer Vision,1997,24(2):137-154.

共引文献40

同被引文献25

  • 1Roberts WT, Bax J J, Davies angiography: technology and LC. Cardiac CT and CT coronary application [J]. Heart, 2008, 94(6):781-92.
  • 2Hausleiter J, Meyer T, Hermann F, et al. Estimated radiation dose associated with cardiac CT angiography [J]. JAMA, 2009, 301(5): 500-7.
  • 3Herzog C, Mulvihill DM, Nguyen SA, et al. Pediatric cardiovascular CT angiography: radiation dose reduction using automatic anatomictube current modulation[J]. AJR Am J Roentgenol, 2008, 190(5): 1232-40.
  • 4BischoffB, Hein F, Meyer T, et al. Impact of a reduced tube voltage on CT angiography and radiation dose [J]. J Am Coll Cardiol Img, 2008, 2(8): 940-6.
  • 5Wang J, Li T, Lu H, et al. Penalized weighted least-squares approach to sinogram noise reduction and image Reconstruction for low-dose X-ray computed tomography [J]. IEEE Trans Med Imaging, 2006, 25(10): 1272-83.
  • 6Ma J, Zhang H, Gao Y, et al. Iterative image Reconstruction for cerebral perfusion CT using a pre-contrast scan induced edge- preserving prior[J]. Phys Med Biol, 2012, 57(22): 7519-42.
  • 7La Rivi6re PJ, Bian J, Vargas PA. Penalized-likelihood sonogram restoration for computed tomography[J]. IEEE Trans Med Imaging, 2006, 25(8): 1022-36.
  • 8Mendrik AM, Vonken EJ, Rutten A, et al. Noise reduction in computed tomography scans using 3-d anisotropic hybrid diffusion with continuous Switch [J]. IEEE Trans Med Imaging, 2009, 28 (10): 1585-94.
  • 9Kang D, Slomka P, Nakazato R, et al. Image denoising of low- radiation dose coronary CT angiography by an adaptive block- matching 3D algorithm [J]. Proc SPIE, 2013, doi: 10.1117/ 12.2006907.
  • 10Ma J, Huang J, Feng Q, et al. Low-dose computed tomography image restoration using previous normal-dose scan[J]. Med Phys, 2011, 38(10): 5713-31.

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部