期刊文献+

基于统计处理图像放大方法在人脸识别中应用 被引量:1

Application of an Image Magnification Method Based on Statistical Processing in Face Recognition
下载PDF
导出
摘要 图像插值是数字图像处理中最基本、最重要的技术之一。文中设计提出一种新的边缘方向算法得到高分辨率图像的插值,并且把这个放大算法运用在人脸识别中。在很多视频监控中,尤其是当目标人脸离摄像头距离非常远,获得的目标人脸图像通常比较小,以至于难以对目标人脸图像进行正确的识别。文中首先提出了一种基于统计处理图像放大方法,使图像放大后更为清晰和易辨。然后应用主成分分析(PCA)和径向基函数网络(RBF)方法对放大后的人脸图像进行识别。经过多次实验,结果表明该识别方法在低分辨率人脸图像上有较好的识别效果,为人脸的实时识别提供了一种新途径。 Image interpolation is one of the most important technologies in digital image processing. It proposes an edge-directed interpolation algorithm for natural images to adapt the interpolation at a higher resolution and then use this method in face recognition. In many video surveillance systems, especially, when camera is very far away from the target object, the face image is usually small, which makes it difficult to recognize the human face correctly. It presents an image magnification method based on statistical processing, which makes the original image clearer and easier to distinguish. Then the principle component analysis ( PLA ) and the radial basis function neural network (RBF) are applied to human face recognition. The experimental results show that the new recognition method has a high recognition rate in low resolution face images. It provides a new way for real-time face recognition.
出处 《计算机技术与发展》 2011年第12期55-58,共4页 Computer Technology and Development
基金 国家高技术研究发展计划(863计划)(2009AA043303) 软件开发环境国家重点实验室开放课题(SKLSDE-2011KF-04)
关键词 基于统计处理图像放大 主成分分析 径向基函数网络 人脸识别 index termsan image magnification method based on statistical processing principal component analysis radial basis function neural networks face recognition
  • 相关文献

参考文献11

二级参考文献112

共引文献209

同被引文献12

  • 1冈萨雷斯.数字图像处理[M].第2版,北京:电子工业出版社,2003.
  • 2Maeland E. On the comparison of interpolation methods [ J ]. IEEE Transactions on Medical Imaging, 1988,7 ( 3 ) : 213 - 217.
  • 3Rudin L, Osher S, Fatemi E. Nonlinear total variation based noise removal algorithms [ J ]. Physica D, 1992,60:259-268.
  • 4Lysaker M, Lundervold A, Tai X C. Noise removal using fourth -order partial differential equation with applications to medi- cal magnetic resonance images in space and time [ J ]. IEEE Trans on Image Process,2003,12(12) :1579-1590.
  • 5武婷婷,杨余飞,庞志峰.非局部模型及其在图像处理中的应用[J].湘潭大学自然科学学报,2010,32:13-19.
  • 6Lysaker M, Osher S, Tai X C. Noise removal using smoothed normals and surface fitting [ J ]. IEEE Trans on Image Process, 2004,13 (10) : 1345-1357.
  • 7Pang Zhifeng, Yang Yufei. A two-step model for image denois- ing using a duality strategy and surface fitting [ J ]. Journal of Computational and Applied Mathematics,2010,235:82-90.
  • 8Gao Ran, Song Jinping, Tai Xuechemg. Image zooming algo- rithm based on partial differential equations technique[ J]. In- ternational Journal of Numerical Analysis and Modeling,2009, 6(2) :284-292.
  • 9Chambolle A. An algorithm for total variation minimization and applications [ J ]. Journal of Mathematical Imaging and Vision, 2004,20( 1 ) :89-97.
  • 10武婷婷,顾广泽,杨余飞.求解各向异性扩散LLT模型的新的图像去噪算法[J].湖南大学学报(自然科学版),2011,38(8):67-70. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部