期刊文献+

基于CS与K-SVD的欠定盲源分离稀疏分量分析 被引量:14

Sparse presentation of underdetermined blind source separation based on compressed sensing and K-SVD
下载PDF
导出
摘要 为了提高盲源分离的准确率,提出了结合压缩感知(CS)与K均值奇异值分解(K-SVD)的稀疏分量分析方法进行盲源分离.首先,分析欠定盲源分离估计源信号与压缩感知问题的等价性,建立压缩感知框架;其次,在此框架下利用K-SVD方法训练稀疏字典;最后利用经典追踪算法计算得到稀疏分量,结合传统的两步法,进行盲源分离.大量实验表明,该算法与其他稀疏表示方法相比获得了较好的分离效果.与传统两步法不同的是,该算法在压缩感知框架下利用K-SVD方法自适应地训练稀疏字典,求出混合信号的稀疏表示,稀疏分量分析方法的改进对盲源分离的准确率起到直接的影响作用. To improve the precision of blind source separation,a method based on the compressed sensing(CS) and K-means singular value decomposition(K-SVD) is proposed.First,the equivalence between the problem of estimating the source in underdetermined blind source separation and the compressed sensing is analyzed and the framework of compressed sensing is built.Then K-SVD is used to train sparse dictionary self-adaptive under the framework.Finally the sparse component is computed using classic basis pursuit algorithm.Through lots of experiments the algorithm is proved to be a better algorithm,which inherits the advantages of sparse presentation ability and can significantly improve the precision of blind source separation.Different from traditional two steps methods,the algorithm proposed gets sparse presentation of signal taking a new way that combine CS and K-SVD,it shows that sparse presentation influences the result of blind resource separation directly.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第6期1127-1131,共5页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60872073 60975017 51075068) 广东省自然科学基金资助项目(10252800001000001) 东南大学水声信号处理教育部重点实验室开放研究基金资助项目(UASP1003)
关键词 欠定盲源分离 稀疏表示 压缩感知 underdetermined blind source separation sparse representation compressed sensing
  • 相关文献

参考文献9

  • 1Bofill P, Zibulevsky M. Underdetermined blind source separation using sparse representations [ J ]. Signal Pro- cessing, 2001,81( 11 ) : 2353 -2362.
  • 2Li Y Q, Amari S I, Cichocki A. Underdetermined blind source separation based on sparse representation [ J ]. IEEE Transactions on Signal Processing, 2006, 54 (2) : 423 - 437.
  • 3Xu T, Wang W W. A compressed sensing approach for underdetermined blind audio source separation with sparse representation[ C ]//IEEE/SP 15th Workshop on Statistical Signal Processing. Cardiff, UK, 2009 : 493 - 496.
  • 4Lee T W, Lewicki M S, Girolami M, et al. Blind source separation of more sources than mixtures using overcomplete representations[ J ]. IEEE Signal Process- ing Letters, 1999, 6(4) : 87 -90.
  • 5Donoho D L. Compressed sensing [J]. IEEE Transac- tions on Information Theory, 2006, 52 (4): 1289 -1306.
  • 6石光明,刘丹华,高大化,刘哲,林杰,王良君.压缩感知理论及其研究进展[J].电子学报,2009,37(5):1070-1081. 被引量:711
  • 7Blumensath T, Davies M E. Compressed sensing and source separation [ C ]//The 7th International Confer- ence on Independent Component Analysis and Signal Separation. London, UK, 2007:341-348.
  • 8Aharon M, Elad M, Bruckstein A M, et al. K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation [ J ]. IEEE Transactions on Signal Processing, 2006, 54 ( 11 ) : 4311 - 4322.
  • 9Elad M, Bruckstein A M. A generalized uncertainty principle and sparse representation in pairs of bases[J]. IEEE Transactions on Information Theory, 2002, 48 (9) : 2558 -2567.

二级参考文献82

  • 1张春梅,尹忠科,肖明霞.基于冗余字典的信号超完备表示与稀疏分解[J].科学通报,2006,51(6):628-633. 被引量:71
  • 2R Baraniuk.A lecture on compressive sensing[J].IEEE Signal Processing Magazine,2007,24(4):118-121.
  • 3Guangming Shi,Jie Lin,Xuyang Chen,Fei Qi,Danhua Liu and Li Zhang.UWB echo signal detection with ultra low rate sampling based on compressed sensing[J].IEEE Trans.On Circuits and Systems-Ⅱ:Express Briefs,2008,55(4):379-383.
  • 4Cand,S E J.Ridgelets:theory and applications[I)].Stanford.Stanford University.1998.
  • 5E Candès,D L Donoho.Curvelets[R].USA:Department of Statistics,Stanford University.1999.
  • 6E L Pennec,S Mallat.Image compression with geometrical wavelets[A].Proc.of IEEE International Conference on Image Processing,ICIP'2000[C].Vancouver,BC:IEEE Computer Society,2000.1:661-664.
  • 7Do,Minh N,Vetterli,Martin.Contourlets:A new directional multiresolution image representation[A].Conference Record of the Asilomar Conference on Signals,Systems and Computers[C].Pacific Groove,CA,United States:IEEE Computer Society.2002.1:497-501.
  • 8G Peyré.Best Basis compressed sensing[J].Lecture Notes in Ccmputer Science,2007,4485:80-91.
  • 9V Temlyakov.Nonlinear Methods of Approximation[R].IMI Research Reports,Dept of Mathematics,University of South Carolina.2001.01-09.
  • 10S Mallat,Z Zhang.Matching pursuits with time-frequency dictionaries[J].IEEE Trans Signal Process,1993,41(12):3397-3415.

共引文献710

同被引文献126

引证文献14

二级引证文献59

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部