期刊文献+

基于退化模型和邻域嵌套的彩色图像超分辨率自适应重建 被引量:1

Degradation model and neighbor embedding based color image adaptive super-resolution reconstruction
下载PDF
导出
摘要 为有效提升图像质量,提出一种基于图像退化模型和邻域嵌套的彩色图像超分辨率重建算法.通过退化模型在彩色空间上得出图像超分辨率重建训练集,并根据此训练集进行图像邻域分块.为了在训练过程中抑制噪声并锐化图像中的边缘信息,提取训练集亮度和梯度特征并进行特征融合.为了有效提升重建算法的自适应性,引入图像重建优化参数和边缘信息参数,根据此参数给出重建模型.基于最小二乘法的基本思想得出重建图像分块,并根据对应的次序对分块进行组合,得出最终高分辨率图像.实验结果表明,该算法效果良好. A new color image super-resolution reconstruction method base on degradation model and neighbor embedding is proposed to effectively improve the image quality.Through image degradation model training set is obtained in color space and then according to this set the image area is cut into patches.A new combination of features is proposed based on luminance and gradient,which can preserve edges and smoothen color regions.Then image super-resolution optimization parameter(SOP) and edge information parameter(EIP) are introduced in order to effectively enhance the adaption of the algorithm and according to which,SR(super-resolution) model is given.Finally,the specific process of patches by Least Squares method is obtained.And the patches are stitched according to the corresponding coordinates,where the overlapping regions of patches are averaged.Experiments show that the proposed algorithm performs better in both quantitative and qualitative evaluation.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第6期1193-1196,共4页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(60905009) 高等学校博士学科点专项科研基金资助项目(20093218120015) 中国科学院遥感应用研究所 北京师范大学遥感科学国家重点实验室开放基金资助项目(2009KFJJ012) 南京航空航天大学基本科研业务费专项科研资助项目(NS2010081)
关键词 超分辨率重建 退化模型 邻域嵌套 特征提取 super-resolution reconstruction degradation model neighbor embedding feature extraction
  • 相关文献

参考文献9

  • 1Chaudhuri S. Super-resolution imaging [ M ]. Norwell, MA,USA: Kluwer, 2001.
  • 2Tom B C, Katsaggelos A K. Reconstruction of a high-res- olution image from multiple degraded mis-registered low- resolution images[ J ]. Visual Communications and Image Processing, 1994, 2308(9) : 971 -981.
  • 3Hardie R C, Barnard K J, Armstrong E E. Joint MAP registration and high-resolution image estimation using a sequence of under sampled images [ J ]. IEEE Transac- tion on Image Processing, 1997, 6(9) : 1621 - 1633.
  • 4杨欣,王从庆,费树岷.基于最大后验概率的SAR图像自适应超分辨率盲重建[J].宇航学报,2010,31(1):217-221. 被引量:6
  • 5Freeman W T, Jones T R, Pasztor E C. Example-based super-resolution [ J ]. IEEE Computer Graphics and Ap- plications, 2002, 22 (2) : 56 - 65.
  • 6Chen M, Qiu G, Lam K M. Example selective and order independent learning-based image super-resolution [ C ]//International Symposium on Intelligent Signal Pro- cessing and Communication Systems. Seoul, Korea, 2005 : 77 - 80.
  • 7Chang H, Yeung D Y, Xiong Y. Super-resolution through neighbor embedding [ C ]//IEEE Computer Soci- ety Conference on Computer Vision and Pattern Recogni- tion. Washington DC, USA, 2004 : 275 - 282.
  • 8Wei F, Yeung D Y. Image hallucination using neighbor embedding over visual primitive manifolds [ C ]//IEEE Conference on Computer Vision and Pattern Recognition. Minneapolis, MN, USA, 2007:201-205.
  • 9Chan Tak-Ming, Zhang Junping, Pu Jian, et al. Neigh- bor embedding based super-resolution algorithm through edge detection and feature selection [ J ]. Pattern Recog- nition Letters, 2009, 30 ( 2 ) : 494 - 502.

二级参考文献9

  • 1Park S C, Park M K, Kang M G. Super-resolution image reconstruction: A technical overview[J]. IEEE Transaction on Signal Processing, 2003, 20(5): 21- 36.
  • 2Narayanan B, Hardie R C, Barner K E, Min Shao. A computationally efficient super-resolution algorithm for video processing using partition filters[J]. IEEE Transactions on Circuits and Systems for Video Technology, 2007, 17(5) :621 - 634.
  • 3YU He, Kim-Hui Yap, LI Chen, Lap-Pui Chau. A nonlinear least square technique for simultaneous image registration and.super-resolution[J]. IEEE Transaction on Image Processing, 2007, 16 ( 11 ) :2830 - 2841.
  • 4Chung J, Haber E, Nagy J. Numerical methods for coupled super resolution[J]. Inverse Problem, 2006, 22:1261 - 1272.
  • 5Tom B C, Katsaggelos A K. Reconstruction of a high-resolution image from multiple degraded mis-registered low-resolution images[J]. In Proceeding of Conference on Visual Communications and Image Processing, 1994, 2308(9) : 971 - 981.
  • 6Schultz R R, Stevenson R L. A bayesian approach to image expansion for improved definition[J]. IEEE Transactions on Image Processing, 1994, 3(5) : 233 - 242.
  • 7Hardie R C, Barnard K J, Armstrong E E. Joint MAP registration and high-resolution image estimation using a sequence of under sampied images[J].IEEE Transaction on Image Processing, 1997, 6 (12) : 1621 - 1633.
  • 8Huanfeng Shen, Liangpei Zhang, Bo Huang, Ping:dang Li. A MAP approach for joint motion estimation, segmentation, and super Resolution [J]. IEEE Transactions on Image Processing, 2007, 16(2) :479 - 490.
  • 9邵文泽,韦志辉.局部几何结构驱动的图像插值放大及超分辨率复原[J].中国图象图形学报,2008,13(7):1235-1243. 被引量:9

共引文献5

同被引文献9

  • 1Chaudhuri S. Super-resolution imaging[M].Norwell,MA,USA:Kluwer Academic,2001.100-125.
  • 2Shen H,Zhang L,Huang B. A MAP approach for joint motion estimation,segmentation,and super resolution[J].IEEE Transactions on Image Processing,2007,(02):479-490.doi:10.1109/TIP.2006.888334.
  • 3Freeman W T,Jones T R,Pasztor E C. Examplebased super-resolution[J].IEEE Computer Graphics and Applications,2002,(02):56-65.
  • 4Chen M;Qiu G;Lam K M.Example selective and order independent learning-based image super-resolution[A]香港,200577-80.
  • 5Chang H,Yeung D Y,Xiong Y. Super-resolution through neighbor embedding[A].Washington,DC:USA,2004.275-282.
  • 6Wei F,Yeung D Y. Image hallucination using neighbor embedding over visual primitive manifolds[A].Minneapolis,Minnesota,USA,2007.201-205.
  • 7Chan T M,Zhang J,Pu J. Neighbor embedding based super-resolution algorithm through edge detection and feature selection[J].Pattern Recognition Letters,2009,(02):494-502.doi:10.1016/j.patrec.2008.11.008.
  • 8杨欣,王从庆,费树岷.基于最大后验概率的SAR图像自适应超分辨率盲重建[J].宇航学报,2010,31(1):217-221. 被引量:6
  • 9杨欣,费树岷,周大可.基于MAP的自适应图像配准及超分辨率重建[J].仪器仪表学报,2011,32(8):1771-1775. 被引量:19

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部