期刊文献+

稀溶液中线形DNA分子链结构及扩散的布朗动力学模拟

Brownian dynamics simulation of conformation and diffusion of linear DNA chain in dilute solution
下载PDF
导出
摘要 通过构建全参数化的珠-弹簧分子链模型,并运用一种高效稳定的半隐式预测-校验积分算法求解描述稀溶液中DNA分子链结构演化的随机动力学方程组,系统研究了体积排斥作用、有限伸长弹性作用和涨落流体动力学作用对分子链的回旋半径、质心扩散系数以及相应标度指数的影响.模拟结果能够验证良溶剂中分子链Zimm模型的标度规律,并揭示出3种非线性作用对稀溶液中分子链静态结构属性和动力学属性不同的影响程度和变化趋势.分子链柔性对稀溶液中DNA结构、扩散系数以及标度指数影响都很小.溶剂品质的提高可显著增大分子链的回旋半径,减小其扩散系数,并且使两者随链长的标度指数显著增加.流体动力学作用不改变分子链的结构,但显著影响其扩散系数.随着流体作用的增强,分子链的质心扩散系数增大,随链长变化的标度指数减小. By constructing a full-parameterized bead-spring chain model and applying a highly efficient second-order semi-implicit predictor-corrector algorithm,the influence of three nonlinear interactions including excluded volume interaction,finite extensible nonlinear elastic interaction and fluctuating hydrodynamic interaction on the radius of gyration,diffusion coefficient and their scaling exponents are studied systematically.Simulation results validate the scaling law of Zimm model in good solvent and demonstrate different degrees and directions of these nonlinear effects.Chain flexibility has little influence on conformation and diffusion coefficient.The higher solvent quality clearly increases the radius of gyration and decreases the diffusion coefficient,and makes both quantities increase with the scaling exponents.In addition,the hydrodynamic interaction has little influence on the conformation of DNA chain,but it increases the diffusion coefficient and decreases its scaling exponent greatly.
出处 《东南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2011年第6期1219-1224,共6页 Journal of Southeast University:Natural Science Edition
基金 国家自然科学基金资助项目(20875014 30901285)
关键词 线形DNA分子链 珠-弹簧模型 非线性作用 布朗动力学模拟 回旋半径 扩散系数 linear DNA molecule chain bead-spring model nonlinear interactions BDS(Brownian dynamics simulation) radius of gyration diffusion coefficient
  • 相关文献

参考文献17

  • 1ottinger H C. Stochastic processes in polymeric fluids [M]. Berlin: Springer Press, 1996:1-256.
  • 2Hatfield J W, Quake S R. Dynamic properties of an ex- tended polymer in solution [ J]. Phys Rev Lett, 1999, 82(17) : 3548-3551.
  • 3Somasi M, Khomami B, Woo N J, et al. Brownian dy- namics simulations of bead-rod and bead-spring chains : numerical algorithms and coarse-graining issues [ J ]. J Non-Newton Fluid, 2002, 108(1/2/3) : 227- 255.
  • 4Prabhakar R, Prakash J R. Multiplicative separation of the influences of excluded volume, hydrodynamic inter- actions and finite extensibility on the rheological proper- ties of dilute polymer solutions [ J ]. J Non-Newton Flu- id, 2004, 116(2/3): 163 -182.
  • 5Hoda N, Kumar S. Parameters influencing diffusion dy- namics of an adsorbed polymer chain[ J]. Phys Rev E, 2009, 79 (2) : 208011 - 208014.
  • 6Valle F, Favre M, de Los Rios P, et al. Scaling expo- nents and probability distributions of DNA end-to-end distanceEJ]. Phys Rev Lett, 2005, 95(15) : 158105.
  • 7Maier B, Radler J O. Conformation and self-diffusion of single DNA molecules confined to two dimensions[ J ].Phys Rev Lett, 1999, 82(9) : 1911 - 1914.
  • 8Maeir B, Radler J O. DNA on fluid membranes: a model polymer in two dimensions [ J ]. Macromole- cules, 2000, 33(19): 7185-7194.
  • 9Schroeder C M, Shaqfeh E S G, Chu S. Effect of hy- drodynamic interactions on DNA dynamics in extension- al flow: simulation and single molecule experiment[ J]. Macromolecules, 2004, 37 (24) : 9242 - 9256.
  • 10Hsieh C, Lei L, Larson R G. Modeling hydrodynamic interaction in Brownian dynamics: simulations of ex- tensional ows of dilute solutions of DNA and polysty- rene[J]. J Non-Newton Fluid, 2003,113(2/3) : 147 -191.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部