期刊文献+

基于BP神经网络的TC11钛合金工艺-性能模型预测 被引量:17

Model Prediction of Processing-Property of TC11 Titanium Alloy Using Artificial Neural Network
原文传递
导出
摘要 材料工艺与性能的关系具有复杂、非线性交互等特点。本文根据TC11钛合金力学性能与其影响因素之间的映射关系,以大量的试验数据为基础,建立了BP神经网络模型。模型的输入包括锻造温度、锻后冷却方式等热加工工艺参数;输出为常用的力学性能指标,即抗拉强度、屈服强度、延伸率和断面收缩率。运用该模型对TC11钛合金力学性能进行了预测,并通过试验数据对模型的预测精度进行了可靠性验证。同时,运用已建立的神经网络模型对TC11钛合金工艺参数与力学性能的关系进行了分析。结果表明,所建立的力学性能预测模型具有良好的外推能力,并且可以很好地反映出该合金的工艺-性能之间的复杂关系。 The relationship between processing and property of materials is complex.In the present investigation,based on a lot of experimental data,the technique of artificial neural network was employed to develop the prediction model of processing and property for TC11 titanium alloy.The inputs of the neural network were different forging process parameters such as forging temperature,forging style and cooling style.The outputs of the model were the tensile properties,including ultimate tensile strength,yield strength,elongation and reduction of area.The mechanical properties of TC11 titanium alloy were predicted by the established model,and the accuracy of the prediction was compared with the experimental data.Besides,the model was used to study the influence of the processing on the properties of TC11 titanium alloy.Results show that the model can predict the properties of this alloy with high accuracy and reliability,and the complex relationship between processing and properties can be well presented by the trained neural network,which is consistent with the metallurgical trends.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2011年第11期1951-1955,共5页 Rare Metal Materials and Engineering
基金 国家"973"计划(2007CB613807) 新世纪优秀人才支持计划(NCET-07-0696) 凝固技术国家重点实验室开放课题(35-TP-2009)
关键词 TC11钛合金 工艺 性能 BP神经网络 预测 TC11 titanium alloy processing property BP neural network prediction
  • 相关文献

参考文献16

  • 1曾卫东,周义刚.冷速对TC11合金β加工显微组织和力学性能的影响[J].金属学报,2002,38(12):1273-1276. 被引量:54
  • 2TangGuangxin(唐光听) ZhuZhangxiao(朱张校).稀有金属,2002,:146-146.
  • 3Sun Xinjun, Bai Bingzhe, Gu Jialin et al. Rare Metal[J], 2000, 19(2): 101.
  • 4单德彬,史科,徐文臣,吕炎.TC11钛合金热变形机制及其热加工图[J].稀有金属材料与工程,2009,38(4):632-636. 被引量:17
  • 5陈慧琴,曹春晓,郭灵,林海.TC11钛合金片层组织热变形球化机制[J].稀有金属材料与工程,2009,38(3):421-425. 被引量:27
  • 6Zong Y Y, Shan D B, Xu Met al. Journal of Materials Processing Technology[J], 2009, 209(4): 1988.
  • 7Chen Huiqin, Cao Chunxiao, Guo Ling et al. Transactions of Nonferrous Metals Society of China[J], 2008, 18(5): 1021.
  • 8DongChanghong(董长虹).Artificial Neural Network and Application with Matlab (Matlab神经网络与应用)[M].Beijing:National Defence Industry Press, 2005:64.
  • 9Reddy N S, You Hwan Lee, Chan Hee Park et al. Materials Science and Engineering A [J], 2008, 492:276.
  • 10McBride J, Malinov S, Sha W. Materials Science and Engineering A[J], 2006, 384:129.

二级参考文献41

共引文献117

同被引文献143

引证文献17

二级引证文献76

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部