期刊文献+

Ce基催化剂对2LiBH_4/MgH_2放氢性能的影响 被引量:1

Effects of Ce-Based Catalysts on Hydrogen Storage Properties of 2LiBH_4/MgH_2 Composite
原文传递
导出
摘要 采用球磨方法制备了2LiBH4/MgH2复合储氢材料体系,用XRD、FTIR和储氢性能测试手段等对复合体系结构和储氢性能进行表征,研究了不同Ce基催化剂对复合体系放氢性能的影响,分析了催化剂的催化机理。结果表明:2LiBH4/MgH2复合物加热过程为明显的两步放氢,第1步主要发生MgH2的分解放氢;第2步为第1步生成的Mg与LiBH4发生放氢反应;添加Ce和CeF3都能提高2LiBH4/MgH2体系的放氢性能。Ce主要改善体系第2步放氢特性,CeF3对体系两步放氢反应均产生显著效果。添加5mol%CeF3使2LiBH4/MgH2体系起始放氢温度降低约100℃,体系最大放氢量达到10.6%(质量分数,下同);F-取代部分H-形成LiBH1-xFx,改善了LiBH4的分解特性,从而显著改善了2LiBH4/MgH2体系的放氢性能。 2LiBH4/MgH2 hydrogen storage composite was prepared by ball-milling technology,and its microstructures and hydrogen storage properties were characterized by X-ray diffraction(XRD),Fourier transform infrared spectroscopy(FTIR) and hydrogen storage measurements.The effects of Ce-based catalysts on the hydrogen storage properties of the composite were studied.The results show that hydrogen release of 2LiBH4/MgH2 composite is a two-step process,i.e.,the first is the decomposition of MgH2 and the second is the reaction between LiBH4 and Mg just produced.Ce or CeF3 addition can improve the dehydrogenation of 2LiBH4/MgH2 composite.Ce mainly improves the behavior of the second step reaction while CeF3 influences the behavior of the two steps greatly.For the 2LiBH4/MgH2 composite with addition of 5 mol% CeF3,the total hydrogen capacity reaches 10.6 wt% at 450 oC and the initial hydrogen release temperature is decreased by around 100 oC.LiBH1-xFx is formed by partial substitution of F-for H-,which decreases the decomposition temperature of LiBH4.
机构地区 浙江大学
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2011年第11期1982-1985,共4页 Rare Metal Materials and Engineering
基金 国家自然科学基金(51171168 50671094) 国家重点基础研究计划(2007CB209706)
关键词 储氢材料 储氢性能 LiBH4 MgH2 催化剂 hydrogen storage materials hydrogen storage properties LiBH4 MgH2 catalyst
  • 相关文献

参考文献12

  • 1Louis Schlaphach, Andreas Ztlttel. Nature[J], 2001, 414:353.
  • 2Andreas Zuttel, Rentsch S. Journal of Alloys and Compounds[J], 2003,356-357:515.
  • 3Vajo J J, Skeith Sky Let al. The Journal of Physical and Chemistry B Letters[J], 2005(9): 3719.
  • 4Dhanesh Chandra, Reilly J J et al. Journal of the Minerals Metals & Materials Society[J], 2006(2): 26.
  • 5Gennari F C, puszkiel J A et al. Journal of Power Sources[J], 2010, 195:3266.
  • 6Gennar F C, Esquivel M R et al. Journal of Alloys and Compound [J], 2009, 485:47.
  • 7Senon Ah Jim, Young Su Lee et al. Journal of Physical Chemistry C[J], 2008, 112:9520.
  • 8Wang Pei-Jun, Fang Zhan-Zhan et al. International Journal of Hydrogen Energy[J], 2010, 10:3072.
  • 9Wang Peijun, Ma Laipeng et al. Energy & Environmental Science[J], 2009, 2:20.
  • 10Tessui N, Takayuki Iet al. Journal of Alloys and Compounds [J], 2007, 446-447:306.

同被引文献22

  • 1唐文静,傅和青,黄洪,陈焕钦.新型能源载体—储氢材料研究进展[J].化工新型材料,2006,34(10):22-24. 被引量:3
  • 2卢国俭,周仕学,马怀营,谭琦,于小翠.储氢材料85Mg10C4Ni1Al的制备及性能研究[J].现代化工,2007,27(9):42-43. 被引量:2
  • 3YUANPei Pei,LIU Bin Hong,ZHANG Bang Jie. Reversible Hydrogen Storage Composite Based on 6LiBH4 +CaF2[J], J Phys Chem C, 2011,115:7067-7069.
  • 4YANGJun,SUDIK A,SIEGEL D J. Hydrogen storage properties of 2LiNH2 +LiBH4 + MgH2 [J]. J Alloy Compd,2007,446/447:345-349.
  • 5MAOJianfeng, GUO Zaiping, YU Xuebia Enhanced hydrogen sorption properties in the LiBH4,MgHz systemcatalysed by Ru nanoparticles supported on multiwalled carbon nanotubes [J]. J Alloy Compd, 2011,509:5012-5015.
  • 6RUDEL H?GROPPO E, ARNBJERG L M. Iodide substitution in lithium borohydride LiBH4-LiI[J]. J AlloyCompd, 2011,509:8299-8305.
  • 7ORIMOS?NAKAMORI Y,ELISEO J R Complex Hydrides for Hydrogen Storage[J]. Chem Rev, 2007,107:4123-4126.
  • 8KOUHuaqin, ZHANG Xiaoxue,CHEN Lixin. Formation mechanism of MgB2 in 2LiBH4 + MgH2 system forreversible hydrogen storage[J]. Trans Nonferr Metal Soc Chn,2011,21:1040-1046.
  • 9马宗强.氢能-21世纪的绿色能源[M].北京:化学工业出版社,2009:1-18.
  • 10周晶晶,陈云贵,吴朝玲,郑欣,房玉超,高涛.新型轻质储氢材料的第一性原理原子尺度设计[J].物理学报,2009,58(7):4853-4861. 被引量:7

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部