期刊文献+

CO_2毒化对Pd膜表面状态与氢同位素渗透性能的影响

Effect of CO_2 Poison on the Surface Phase and the Hydrogen Isotope Permeation Capacity of Pd Membrane
原文传递
导出
摘要 在不同温度的CO2气氛中对Pd膜进行了毒化,将毒化后的Pd膜与氢气反应并测试其氢同位素渗透性能。采用XPS、SEM等检测了CO2在不同温度下对Pd膜毒化后的表面成分与形貌,并对比分析了吸氢前、后的Pd膜表面状态的变化,得出了CO2对Pd膜表面状态的影响规律,探讨了CO2气体的毒化机理。结果表明,CO2分子在Pd表面会解离成为C=O,C-O与O原子,随着温度升高,C=O减少,而C-O与O原子含量增加。当CO2毒化温度达到500℃时,Pd表面会生成PdO并伴有微孔出现,而C-O随温度升高能够稳定吸附于Pd表面。毒化后的试样在常温下进行吸氢反应后表面PdO消失,吸附O含量减少,多孔形貌得到改变。CO2毒化后,由于C-O与O原子在Pd表面吸附并占据了Pd膜表面的氢解离位,从而导致Pd膜透氘能力下降。 The poison of Pd membrane in CO2 at different temperatures and the hydrogenization of the poisoned membrane were carried out in a silica tubular furnace and the hydrogen isotope permeation capacity was tested.The variation of Pd membrane phase and morphology was analyzed and observed by XPS and SEM.The cause and the mechanism of the variation were discussed.The results show that the molecule CO2 will dissociate to C=O,C-O and O on Pd membrane surface.The adsorptive capacity of C-O and O increases and that of C=O decreases with increasing of the temperature.PdO and micropores can be detected apparently when the poison temperature reaches 500 oC,and C-O will be adsorbed on Pd membrane surface firmly.After hydrogenization,the PdO,C-O and free O on the Pd surface vanish while C=O reappear.After the Pd membrane is poisoned by CO2,the hydrogen isotope permeation capacity of Pd membrane decreases because the atom O and C-O occupy H site and react with atom H easily.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2011年第11期1986-1989,共4页 Rare Metal Materials and Engineering
基金 表面物理与化学国家重点实验室开放基金(SPC200701)
关键词 PD膜 毒化 CO2 Pd membrane poison CO2 hydrogen
  • 相关文献

参考文献13

  • 1张桂凯,陆光达,陈虎翅,银陈.CO,O_2,CH_4,CO_2对钯柱氢氘排代性能的影响[J].稀有金属材料与工程,2007,36(6):1106-1109. 被引量:3
  • 2Dean H W Carstens, Pete D Encinias. Hydrogen lsotope Exchanges over Palladium Meta, Conf-9009141-11[R]. Los Angeles: Los Angeles National Laboratory, USA, 1991.
  • 3Amandusson H, Ekedahl L G, Dannetun H. Surface Science[J], 2000, 153:259.
  • 4Wang D, Clewley J D, Flanagan Ted Bet al. JAlloy Comp[J], 2004, 374:158.
  • 5Wang D, Clewley J D,Flanagan Ted Bet al. J Alloy Comp[J], 2000, 261:298.
  • 6Westerstr6m R, Weststrate C J, Resta A et al. Surface Science[J], 2008(14): 2440.
  • 7Wang J, Yun Y, Altman E Iet al. Surface Science[J], 2007(16): 3497.
  • 8Titkov A I, Salanov A N, Koscheev S V. Surface Science[J], 2006(18): 4119.
  • 9Amano M, Nishimura C, Komaki M. Journal of Membrane Science[J], 1990, 31 (5): 404.
  • 10Gielens F C, Knibbeler R J J, Duysinx P F Jet al. Journal of Membrane Science[J], 2006, 279 (1-2): 176.

二级参考文献17

  • 1常丽萍,钟顺和,谢克昌.二氧化碳催化氢化──Ni、Cu间的相互作用及不同担体的影响[J].燃料化学学报,1994,22(2):170-175. 被引量:21
  • 2邵宇,分子催化,1997年,11卷,343页
  • 3钟顺和,化工进展,1986年,1期,37页
  • 4董庆年,红外光谱法,1977年,148页
  • 5LuGuanda(陆光达) LiGan(李赣) JiangGuoqiang(蒋国强).原子能科学技术,2005,22(4):200-200.
  • 6Sandrock G D et al. J Less-Common Met[J], 1980, 73:161
  • 7Dean H W, Carstens et al. Hydrogen Isotope Exchange over Palladium Matel, Conf-9009141-1[R], USA, 1991
  • 8Amandusson H et al. Appl Surf Sci[J], 2000, 153:259
  • 9Wang D et al. Alloy and Compounds[J], 2004, 374:158
  • 10Lewis F A. Hydrogen in Metals Ⅱ[M]. London: Academic Press, 2002:274

共引文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部