期刊文献+

铀吸氘和氚的动力学同位素效应 被引量:2

Kinetic Isotope Effects of Deuterium and Tritium Absorption by Uranium
原文传递
导出
摘要 应用反应速率分析方法,在高真空金属系统中测定了金属铀在恒容体系和150~300℃范围内吸收氘和氚的p-t曲线。由p-t曲线可知,在同一温度下,铀吸氚的速率与铀吸氘的速率基本相同;而随着温度的升高,由于解吸逆反应的影响,铀吸氚(氘)的反应速率降低。根据p-t曲线计算了吸气反应在不同温度的速率常数,得到铀吸氘和氚的表观活化能分别为(-42.8±0.3)和(-43.2±1.2)kJ·mol-1。从活化能数据可以看出,铀吸氘和氚的反应动力学同位素效应不明显。 The p-t curves of deuterium and tritium absorption by uranium were investigated at 150-300 oC by the reaction rate analysis in a constant volume system.The results show that the rate of tritium absorption is equivalent to the rate of deuterium absorption at the same temperature.However,the rate of tritium(deuterium) absorption is decreased when the tritium(deuterium) absorption temperature is increased due to the effect of contrary reaction namely desorption of uranium tritide(deuteride).The rate constants of deuterium and tritium absorption at different temperatures are determined and the activation energy value obtained by this analysis is(-42.8±0.3) and(-43.2±1.2) kJ?mol-1,respectively.Therefore,there are not remarkable kinetic isotope effects for deuterium and tritium absorption by uranium.
出处 《稀有金属材料与工程》 SCIE EI CAS CSCD 北大核心 2011年第11期2010-2013,共4页 Rare Metal Materials and Engineering
基金 国家自然科学基金面上项目(50871106)
关键词 表观活化能 同位素效应 uranium tritium activation energy value isotope effect
  • 相关文献

参考文献13

  • 1Tritium Handing and Safe Storage, DOE-HDBK-1129-99[R]. Washington DC: US DOE, 1999.
  • 2Northrap C. JPhys Chem[J], 1975,79(7): 726.
  • 3Bloch J. JAlloy Compd[J], 2003, 361:130.
  • 4蔚勇军,石岩,常元庆.氦对不饱和氘化铀吸氘行为的影响[J].核化学与放射化学,2005,27(1):24-26. 被引量:5
  • 5Li R, Sun Y, Wei Y Jet al. Fusion Eng Des[J], 2006, 81:859.
  • 6Penzhom R D, Devillers M, Sirch M. JNucl Mat[J], 1990, 170 (3): 217.
  • 7Berezhko P G, Vedeneev A I, Dadonov B F et al. Fusion Technol[J], 1996, 30:1281.
  • 8Gibb R P. JAm Chem Soc[J], 1952, 74:6203.
  • 9Sayi Y S, Ramanjaneyulu P S, Yadav C S et al. J Nuclear Materials[J], 2008, 373:75.
  • 10Stakebake J L. JElectronhem Soc[J], 1979, 126:1596.

二级参考文献34

  • 1Li R, Sun Y, Wei Y J, et al. Fusion Eng. Des., 2006,81:859 -862.
  • 2Daigo S, Junji M, Hiroaki M, et al. J. Alloy Compd., 2004, 381:215-220.
  • 3Masanori H, Toshio O, Katsunori M, et al. Fusion Eng. Des., 2000,49-50:831 -838.
  • 4Monnin C, Ballanger A, Sciora E, et al. Nucl. Instrum. Meth. A, 2000,453:493-500.
  • 5Shinsuke Y, Daigo S, Hiroaki M, et al. J. Alloys Compd., 2004,372:129-135.
  • 6Pletnev R N, Kupryazhkin A Y, Dmitriev A V, et al. J. Struct. Chem., 2002,43(3):445-448.
  • 7LIANG Jian-Hua(梁建华),PENG Shu-Ming(彭述明),LONG Xing-Gui(龙兴贵),et al.J. Isotopes. (Tongweishu), 2003,16(3-4):151-154.
  • 8Yamanaka S, Yoshioka K, Uno M, et al. J. Alloy Compd., 1999,293-295:908-914.
  • 9HUANG Gang(黄刚),LONG Xing-Gui(龙兴贵),YANG Ben-Fu(杨本福),et al.Chinese J. Inorg. Chem.(Wuji Huaxue Xueboo), 2008,24(12):2056-2059.
  • 10Yamanaka S, Daigo S, Hiroaki M, et al. J. Alloy Compd., 2004,372:129- 135.

共引文献10

同被引文献5

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部