期刊文献+

反应温度和反应时间对抗坏血酸-半胱氨酸模式反应形成香味化合物的影响 被引量:1

Effect of reaction temperature and reaction time on aroma compounds generation from Maillard reaction of ascorbic acid and cysteine
原文传递
导出
摘要 以固相微萃取-气相色谱-质谱联用(SPME-GC-MS)技术对抗坏血酸与半胱氨酸(ASA-Cys)的模式反应产物进行鉴定,研究了酸性条件(pH5.00)下反应温度和反应时间对ASA-Cys模式反应形成香味化合物的影响。模式反应的早期阶段主要是ASA和Cys的热降解,此段对反应温度的依赖性很大。140℃的反应温度能使ASA和Cys快速热降解,从而加快Maillard反应的进行,形成风味较佳的肉香味。在此温度下,反应150min,模式反应形成的各类香味化合物的量达到最大,继续延长反应时间,各类香味化合物的量逐渐减少。结果表明140℃的反应温度以及该温度下150min的反应时间对模式反应形成香味化合物是合适的。 The identification of aroma compounds,formed from the model reactions of ascorbic acid(ASA) and cysteine(Cys) at acidic condition(pH5.00) and different temperature condition,was performed using a solid-phase microextraction-gas chromatography-mass spectrometry technique.The effects of reaction temperature and reaction time on aroma compounds generation from Maillard model system of ASA and Cys at pH5.00 were investigated.The early stage of model reaction was mainly the thermal degradation of ASA and Cys,which highly depended on the reaction temperature.The reaction temperature of 140 ℃ can induce ASA and Cys rapid degradation,thus speed up the Maillard reaction to form pleasant meaty aroma.The yield of aroma compounds reached a maximum when the model system was heated to this temperature for 150 minutes,and then reduced gradually with the increase in reaction time.The results suggested that the reaction temperature of 140 ℃ and the reaction time of 150 minutes were appropriate to form aroma compounds for the Maillard model system involving ASA and Cys.
出处 《食品科技》 CAS 北大核心 2011年第12期262-267,271,共7页 Food Science and Technology
基金 国家自然科学基金项目(20876036)
关键词 MAILLARD反应 抗坏血酸 半胱氨酸 反应温度 反应时间 香味化合物 Maillard reaction ascorbic acid cysteine reaction temperature reaction time aroma compound
  • 相关文献

参考文献20

  • 1Cerny C, Briffod M. Effect of pH on the maillard reaction of [C-13(5)]xylose, cysteine, and thiamin[J]. Agric Food Chem,2007,55(4):1552-1556.
  • 2Madrugaa M S, Mottramb D S. The Effect of pH on the Formation of Volatile Compounds Produced by Heating a Model System Containing 5' -Imp and Cysteine[J]. Braz Chem Soc, 1998,9(3):261-271.
  • 3Mottram D S, Nobrega I C C. Formation of sulfur aroma compounds in reaction mixtures containing cysteine and three different forms of ribose[J]. Agric Food Chem, 2002,50(14):4080-4086.
  • 4邓宇,陈正行,罗昌荣,华泽钊.pH对阿拉伯糖-半胱氨酸模型体系致香成分形成的影响[J].食品工业,2009,30(1):4-8. 被引量:4
  • 5Yu A N, Zhang A D. Aroma compounds generated from thermal reaction of L-ascorbic acid with L-cysteine [J]. Food Chemistry,2010,121 : 1060-1065.
  • 6Maillard L C. Action des acides amin e s sur les sucres: formation des m e lano dines par vole m e thodique[J]. Compte-rendu de l' Acad e mie des sciences,1912,154: 66-68.
  • 7Fadel H H M, Mageed M A A, Lofty S N. Quality and flavour stability of coffee substitute prepared by extrusion of wheat germ and chicory roots[J]. Amino Acids,2008,34:307-314.
  • 8Klesk K, Qian M, Martin R R. Aroma extract dilution analysis of cv. meeker(Rubus idaeus L.) red raspberries from Oregon and Washington[J]. Agric Food Chem,2004, 52:5155-5161.
  • 9Fadel H H M, Mageed M A A,Samad A K M E A,.et al. Cocoa substitute: Evaluation of sensory qualities and flavour stability[J]. Eur Food Res Technol,2006,223:125-131.
  • 10Dreher J G, Rouseff R L, Naim M. GC-olfactometric characterization of aroma volatiles from the thermal degradation of thiamin in model orange juice[J]. Agri Food Chem,2003,51:3097-3102.

二级参考文献15

  • 1Gasser, U. & Grosch, W.(1988). Identification of volatile flavor compounds with high aroma values from cooked beef. Z. Lebensm. Unters. Forsch., 186, 489-494.
  • 2Farmer, L. J.; Mottram, D. S.; Whitfield, F. B. Volatile compounds produced in Maillard reactions involving cysteine, ribose and phospholipids. J. Sci. Food Agric. 1989, 49, 347-368.
  • 3Shibamoto, T. Formation of sulfur- and nitrogen- containing compounds from the reaction of furfural with hydrogen sulfide and amomonia[J]. J. Agric. Food Chem. 1977, 25, 205-208.
  • 4Christoph Cerny & Tomas Davidek Formation of Aroma Compounds from Ribose and Cysteine during the Maillard Reaction[J]. J. Agric. Food Chem. 2003, 51, 2741-2721.
  • 5Elmore, J. S.; Mottram, D. S.; Enser, M.; Wood, J. D. Novel thiazoles and 3-thiazolines in cooked beef aroma[J]. J. Agric. Food Chem. 1997,45,3603-3607.
  • 6Donald S. Mottram & Ian C. C. Nobrega Formation of Sulfur Aroma Compounds in Reaction Mixtures Containing Cysteine and Three Different Forms of Ribose[J] J. Agric. Food Chem. 2002, 50, 4080-4086.
  • 7Whitfield, F. B.; Mottram, D. S. Investigation of the reaction between 4-hydroxy-5-methyl-3(2H)-furanone and cysteine or hydrogen sulfide at pH4.5[J]. J. Agric. Food Chem. 1999, 47, 1626-16.
  • 8Bailey, M. E. Maillard reactions and meat flavor development. In Flavor of meat, meat products and seafoods; Shahidi, F., Ed; Blackie Academic &Professional; New York, 1998, pp267-287.
  • 9Nagodawithana, T. W. Savory flavors. Esteekay Associates, Inc, Milwaukee, USA. 1995.
  • 10Anne Meynier & Donald S. Mottram The effect ofpH on the formation of volatile compounds in meat-related model systems[J]. Food Chemistry 52(1995): 361-366.

共引文献3

同被引文献25

  • 1AJANDOUZ E H, IGSERVER A. Nonenzymatic browning reaction of essential amino acids: effect of pH on caramelization and Maillard reaction kinetics[J]. Journal of Agricultural and Food Chemistry, 1999, 47(5): 1786-1793.
  • 2BAISIER W M, LABUZA T P. Maillard browning kinetics in a liquid model system[J]. Journal of Agricultural and Food Chemistry, 1992, 40(5): 707-713.
  • 3LAMBERTS L, ROMBOUTS I, DECLOUR JA. Study of nonenzymic browning in a-amino acid and y-aminobutyric acid/sugar model systems[J]. Food Chemistry, 2008, 111(3): 738-744.
  • 4LEE S M, JOY J, KIM Y S. Investigation of the aroma-active compounds formed in the maillard reaction between glutathione and reducing sugars[J]. Journal of Agricultural and Food Chemistry, 2010, 58(5): 3116- 3124.
  • 5TRESSL R, WONDRAK G T, GARBE L A, et al. Pentoses and hexoses as sources of new melanoidin-like Maillard polymers[J]. Journal of Agricultural and Food Chemistry, 1998, 46 (5): 1765-1776.
  • 6YU A N, TAN Z W, WANG F S. Mechanism of formation of sulphur aroma compounds from L-ascorbic acid and L-cysteine during the Maillard reaction[J]. Food Chemistry, 2012, 132(3): 1316-1323.
  • 7ADAMS A, de KIMPE N. Formation of pyrazines from ascorbic acid and amino acids under dry-roasting conditions[J]. Food Chemistry, 2009, 115(4): 1417-1423.
  • 8YU A N, ZHANG A D. Aroma compounds generated from thermal reaction of L-ascorbic acid with L-cysteine[J]. Food Chemistry, 2010, 121(4): 1060-1065.
  • 9CHEN Y, HO C T. Effects of carnosine on volatile generation from Maillard reaction of ribose and cysteine[J]. Journal of Agricultural and Food Chemistry, 2002, 50(8): 2372-2376.
  • 10CHO I H, LEE S, JUN H R, et al. Comparison of volatile Maillard reaction products from tagatose and other reducing sugars with amino acids[J]. Food Science and Biotechnology, 2010, 19(2): 431-438.

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部