期刊文献+

小麦转录因子TaDREB6基因启动子的克隆及活性分析 被引量:3

Cloning and Activity Analysis of TaDREB6 Promoter in Wheat
下载PDF
导出
摘要 启动子的分析有助于解析植物抵御不良环境的机制。植物DREB转录因子参与对干旱、低温和高盐等胁迫的响应,在抗逆中起着重要作用。本研究利用反向PCR方法从小麦中克隆获得DREB转录因子TaDREB6基因启动子,长度为1 705 bp。PLACE和PlantCARE分析发现,TaDREB6基因启动子包含多种胁迫相关元件。构建由TaDREB6基因启动子驱动的GUS植物表达载体,转化小麦成熟胚愈伤组织,组织化学染色结果表明,TaDREB6基因启动子是诱导型启动子,受干旱、低温、盐、脱落酸和水杨酸等胁迫诱导。Real-time PCR显示,TaDREB6基因受多种胁迫诱导表达,与TaDREB6启动子活性分析结果一致,这些结果为进一步分析DREB转录因子的功能提供了依据。 DREB(dehydration responsive element binding) transcription factors response to drought,low temperature,and high salt etc and help plants survive in environmental stresses.To analyze the molecular mechanism of DREB,TaDREB6 promoter was cloned by inverse PCR from wheat genome,with full-length of 1705 bp.Many basic cis-acting elements related to various environmental stresses and plant hormones were found in the promoter sequence by PLACE and PlantCARE.To analyze the promoter activity,plant transient expression vector fused with the GUS(β-glucuronidase) gene,driven by TaDREB6 promoter was constructed and transformed into mature embryo calli of wheat.The calli were treated by drought,ABA,high salinity,SA,and low temperature and gave transient expression at different degrees.The TaDREB6 expression levels increased when treated with drought,low temperature,ABA,SA and NaCl.These results indicated TaDREB6 promoter was stresses induced promoter,and help to illuminate DREB′s function in improving plants resistance.
出处 《麦类作物学报》 CAS CSCD 北大核心 2011年第5期793-798,共6页 Journal of Triticeae Crops
基金 转基因生物新品种培育重大专项(2009ZX08009-083B、2009ZX08002-008B) 国家自然科学基金项目(31171546)
关键词 小麦 DREB启动子 反向PCR 瞬时表达 Wheat DREB promoter Inverse PCR Transient expression
  • 相关文献

参考文献20

  • 1倪志勇,徐兆师,李连城,陈明,马有志.DREB转录因子在植物抗逆胁迫中的作用机理及应用研究进展[J].麦类作物学报,2008,28(6):1100-1106. 被引量:22
  • 2Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding do- main separate two cellular signal transduction pathways in drought- and low temperature responsive gene expression, re spectively,in Arabdopsis[J].Plant Cell, 1998, 10(8): 1391- 1406.
  • 3Xu Z S,Ni Z Y,l.iu L,et al. Characterization of the TaAIDFa gene encoding a CRT/DRE-binding factor responsive to drought, high salt,and cold stress in wheat[J]. Molecular Ge netics and Genomics,2008,280(6) : 497-508.
  • 4Ito Y,Katsura K, Maruyama K,et al. Functional analysis of rice DREB1/CBF type transcription factors involved in cold responsive gene expression in transgenic rice[J]. Plant Cell Physiology,2006,47(1): 141-153.
  • 5Schramm F, Larkindale J, Kiehlmann E, et al. A cascade of transcription factor DREB2A and heat stress transcription fac- tor HsfA3 regulates the heat stress response of Arabidopsis [J]. Plant Journal,2008,53(2) : 264-274.
  • 6Chen M, Xu Z, Xia I.,et al. Cold induced modulation and func tional analysis of the DRE binding transcription factor gene GmDREB3 ,in soybean (Glycine macc L. )[J]. Journal of Ex perimental Botany,2009,60 (1) : 121-135.
  • 7Chen M,Wang Q Y,Cheng X G,et al. GmDREB2,a soybean DRE-binding transcription factor,conferred drought and high salt tolerance in transgenic plants [J]. Biochemical and Bio- physical Research Communications,2007,353 (2) : 299-305.
  • 8Gao S Q, Chen M, Xia L Q, et al. A cotton (Gossypium hirsu tum) DRE binding transcription factor gene, GhDREB, con fers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat[J]. Plant Cell Reports, 2005,28 (28): 301-311.
  • 9Kasuga M,Miura S,Shinozaki K. A combination of the Arabi dopsis DREB1A gene and stress inducible RD29A promoter improved drought- and low temperature stress tolerance in to- bacco by gene transfer[J]. Plant Cell Physiology, 2004,45 (3) : 346-350.
  • 10RoyChoudhury A,Roy C, Senqupta D N. Transgenic tobacco plants overexpressing the heterologous lea gene Rab16A from rice during high salt and water deficit display enhanced tolerance to salinity stress[J]. Plant Cell Reports, 2007,26 (10): 1853-1859.

二级参考文献17

  • 1Yamaguchi-Shinozaki K, Kasuga M, Liu Q, et al. Biological mechanisms of drought stress response [J]. JIRCAS Working Report, 2002,105, 1 - 8.
  • 2Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular response and the tolerance to dehydration and cold stresses [J]. Annually Review of Plant Biology, 2006, 57:781 - 803.
  • 3Yamaguchi-Shinozaki K, Shinozaki K. Organization of cisacting regulatory elements in osmotic- and cold-stress responsive promoters [J]. Trends of Plant Science, 2005, 10 : 88 - 94.
  • 4Yamaguchi-Shinozaki K, Shinozaki K. A novel cis-acting element in an Arahidopsis gene is involved in responsiveness to drought, low-temperature, or high-salt stress [J ]. Plant Cell, 1994, 6: 251-264.
  • 5Baker S S, Wilhelm K S, Thomashow M F. The 5'-region of Arahidopsis thaliana cor15a has cis-acting elementsthat confer cold-, drought- and ABA-regulated gene expression [J]. Plant Molecular Biology, 1994, 24:701 - 713.
  • 6Okamuro J K, Caster B, Villarroel R, et al. The AP2 domain of APETELA2 defines a large new family of DNA binding proteins in Arabidopsis[J]. Proceeding of National Academy Science of USA, 1997, 94:7076 - 7081.
  • 7Agarwal P K, Agarwal P, Reddy M K, et al. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants [J]. Plant Cell Report, 2006, 25:1263 - 1274.
  • 8Liu Q, Kasuga M, Sakuma Y, et al. Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis[J]. Plant Cell, 1998, 10: 1391
  • 9Liu N, Zhong N Q, Wang G L. Cloning and functional characterization of PpDBF1 gene encoding a DRE-hinding transcription factor from Physcomitrella patens [J]. Planta, 2007, 226:827 - 838.
  • 10Ito Y, Katsura K, Maruyama K, et al. Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice [J]. Plant Cell Physiology, 2006, 47(1): 141- 53.

共引文献39

同被引文献28

  • 1尹辉,李丹,张毅,李秋莉.植物基因启动子的克隆方法及其应用[J].分子植物育种,2006,4(z1):85-91. 被引量:12
  • 2王平荣,邓晓建,高晓玲,陈静,万佳,姜华,徐正君.DREB转录因子研究进展[J].遗传,2006,28(3):369-374. 被引量:24
  • 3Schachtman D P, Schroeder J I. Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants [ J]. Nature, 1994,370:655 - 658.
  • 4Anderson J A, Huprikar S S, Kochian L V, et al. Function- al expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae [ J ]. Proc Natl Acad Sci USA, 1992,89 : 3736 - 374(I.
  • 5Rubio F, Gassmann W, Schroeder J I. Sodium-driven po- tassium uptake by the plant potassium transporter HKT1 and mutations conferring salt tolerance [ J ]. Science, 1995,270 : 1660 - 1663.
  • 6Gassman W, Rubio F, Schroeder J I. Alkali cation selec- tivity of the wheat root high-affinity potassium transporter HKTI[J]. Plant J,1996,10:869-882.
  • 7Uozumi N, Kim E J, Rubio F,et al. The Arabidopsis HKT1gene homolog mediates inward Na" currents in Xenopus laevis ooeytes and Na + uptake in Saccharomyces cerevisiae [ J ]. Plant Physiol,2000,122 : 1249 - 1259.
  • 8Fairbairn D J,Liu W, Schachtman D P, et al. Character- ization of two distinct I-IKTl-like potassium transporters from Eucalyptus camalduleusis[ J]. Plant Mol Bio1,2000, 43:515 - 525.
  • 9Santa-Maria G E,Rubio F,Dubcovsky J,et al. The HAK1 gene of barley is a member of a large gene family and en- codes a high-affinity potassium transporter [ J ]. Plant Cell, 1997,9 : 2281 - 2289.
  • 10Horie T,Yoshida K,Nakayama H, et al. Two types of HKT transporters with different properties of Na ~ and K ~ trans- port in Oryza sativa[J]. Plant J,2001,27(2) :129 - 138.

引证文献3

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部