期刊文献+

一种非实质性肺结节分割的新方法

A new method for segmenting nonsolid nodules on CT images
下载PDF
导出
摘要 本文提出一种分割非实质性肺结节的新方法。首先通过阈值操作去除高亮的实质部分;其次根据模糊数学建立非实质性肺结节的模糊隶属度模型,并根据该模型计算各体素对非实质性肺结节的隶属度,以此为特征向量进行体素分类;然后基于Hessian矩阵的特征值进行血管增强,通过阈值去除血管;最后通过三维连通域标记获取非实质性肺结节。实验结果表明,应用本文方法能够比较准确地将非实质性肺结节分割出来,分割效果优于目前文献报道的其他方法。本文方法可作为分割非实质性肺结节的工具。 To solve the current segmenting problems in nonsolid pulmonary nodules,a new three-dimensional segmentation method based on a fuzzy membership model was developed.Firstly,a single intensity threshold was used to separate the solid voxels.Secondly,a fuzzy membership model of nonsolid nodule was built and combining with linear discriminant a voxel classifier is produced.Then blood vessels were enhanced using hessian matrix eigenvalue and deleted by a simple threshold.Finally,the nonsolid nodule was gotten through 3D connected component labeling.This method was experimented on clinical CT data,and achieved good results,showing that the proposed method can be used as a good tool to segment nonsolid nodules in CAD systems.
出处 《中国医学影像技术》 CSCD 北大核心 2011年第12期2531-2535,共5页 Chinese Journal of Medical Imaging Technology
基金 国家自然科学基金(60972122) 上海市教委科研创新项目(09YZ216)
关键词 非实质性肺结节 三维分割 模糊隶属度模型 Hessian矩阵特征值 Nonsolid pulmonary nodule Three-dimensional segmentation Fuzzy membership model Hessian matrix eigenvalue
  • 相关文献

参考文献10

  • 1Lee MC, Wiemker R, Boroczky L, et al. Impact of segmentation uncertainties on computer-aided diagnosis o5 pulmonary nodules. Int J Comput Assisted Radiol and Surg, 2008,3(6) :551-558.
  • 2Zhang L, Fang M, David P, et al. Consistent interactive segmen tation of pulmonary ground glass nodules identified in CT studies. Proc SPIE, 2004,5370:1709-1717.
  • 3Zhang L, Zhang TT, Novak CL, et al. A computer-based meth od of segmenting ground glass nodules in pulmonary CT images comparison to expert radiologists' interpretations. Proc SHE 2005.5747:113-121.
  • 4Zhou J, Chang S, Metaxas DN, et al. Automatic detection and segmentation of ground glass opacity nodules. Med Image Comput Comput Assist Interv, 2006,9(Pt 1):784-791.
  • 5Yoo Y, Shim H, Lee SU, et al. Segmentation of ground glass o- pacities by asymmetric multi-phase deformable model. Proceed- ings of SPIE, 2006,6144 : 1709-1717.
  • 6Browder W. The segmentation of nonsolid pulmonary nodules in CT images. New York: Faculty of the Graduate School of Cornell University, 2007.
  • 7Tao Y, Lu L, Dewan M, et al. Multi-level ground glass nodule detection and segmentation in CT lung images. Med Image Com- put Comput Assist Interv, 2009, 12(Pt 2) :715-723.
  • 8Okada T, Iwano S, Ishigaki T, et al. Computer-aided diagnosis of lung cancer: definition and detection of ground-glass opacity type of nodules by high-resolution computed tomography. Jpn J Radiol, 2009,27(2) :91-99.
  • 9Frangi AF, Niessen WJ, Vincken KL, et al. Multiscale vessel enhancement filtering. Med Image Comput Comput Assist Interv, 1998, 1496 : 130-137.
  • 10Theodoridis S, Koutroumbas K. Pattern Recognition. 2nd ed. New York: Academic Press, 2003.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部