摘要
针对磁场与流场耦合问题的数值分析,提出并证明求解离散化过程所得到的非线性方程组牛顿-拉夫逊方法的一类局部收敛性条件.这一条件不仅给出了时间步长与空间步长、拟压缩因子等之间的关系,而且为数值求解磁场与流场耦合问题的牛顿-拉夫逊方法收敛性提供了理论依据.数值算例表明时间步长的实际取值要比理论值偏大.
A local convergence condition of Newton-Laphson's method in solving discretization nonlinear equations of coupled problems is shown and proved.It gives out relation among time-step and space-step and quasi-compression factor.And it provides theoretically an assurance for convergence of Newton-Laphson's method within numerical analysis.Numerical example shows that the time-step in actual calculating can be greater than theoretical value slightly.
出处
《计算物理》
EI
CSCD
北大核心
2011年第6期835-842,共8页
Chinese Journal of Computational Physics
基金
Supported by Liaoning Natural Science Foundation(Grant No.20092051)
Scientific and Technologic Research Project of Educational Department of Liaoning Province(Grant No.L2010388)