期刊文献+

GFP标记的尖孢镰刀菌西瓜专化型侵染西瓜过程观察 被引量:17

Observation of the Infection Process of Watermelon by Fusarium oxysporum f.sp. niveum Using the GFP Marker
下载PDF
导出
摘要 将绿色荧光蛋白基因转入西瓜尖孢镰刀菌FON中,并利用荧光共聚焦显微镜观察GFP标记菌株侵染西瓜的过程。结果显示,转化子连续转接4代能够稳定遗传,荧光强度良好,PCR验证gfp基因已转入菌株FON中;利用GFP标记菌株在荧光共聚焦显微镜下观察其侵染西瓜苗的过程,发现在1/2 MS培养的西瓜苗中,FON经过48 h侵染即可进入西瓜的根维管束,第3天便进入茎维管束,第4天进入叶维管束(包括叶柄和叶脉);在土壤盆栽条件下,侵染后2 d FON进入西瓜的根维管束,第9天进入茎维管束,第11天进入叶维管束。培养基培养与土壤盆栽相比,培养基栽培FON侵染的速度更快。 Fusarium oxysporum f. sp. Niveum(FON)was successfully transformed with the gene coding for green fluorescent protein (GFP). Transformants could emit quite stable fluorescence under 488 nm laser after four successive subcultures. PCR analysis confirmed that the gfp gene was transformed into FON. Observation of watermelon infection process by the GFP expressing FON strain was then carried out. Watermelon grown on 1/2 MS medium and soil were used for the study and their roots were inoculated with the FON strain. Results revealed that FON invaded into roots, pseudostem, and leaf vascular bundle after 48 hours, 3 days and 4 days, respectively, when the seedlings grown on the 1/2 MS medium were inoculated. On the soil-grown seedlings, FON was detected in roots, pseudostem and leaf vascular bundle after 2, 9 and 11 days, respectively. The infection of FON invading watermelon grown on the 1/2 MS medium is faster than in pots.
出处 《热带作物学报》 CSCD 2011年第10期1935-1939,共5页 Chinese Journal of Tropical Crops
基金 中央级公益性科研院所基本科研业务费(No.ITBBZX0821) 公益性行业(农业)科研专项(No.200903049) 海南省自然基金项目(No.310078)
关键词 尖孢镰刀菌西瓜专化型 GFP 西瓜 侵染过程 Fusarium. oxysporum f. sp. niveum Green fluorescent protein Watermelon Infection process
  • 相关文献

参考文献9

二级参考文献73

  • 1徐进,莫明和,张克勤.绿色荧光蛋白(GFP)在真菌研究中的应用[J].生物技术,2004,14(6):74-77. 被引量:13
  • 2周礼红,李国琴,王正祥,诸葛健.红曲霉原生质体的制备、再生及其遗传转化系统[J].遗传,2005,27(3):423-428. 被引量:37
  • 3伏建国,强胜,朱云枝.链格孢菌原生质体的制备与限制性内切酶介导整合(REMI)转化的致病性诱变[J].菌物学报,2005,24(3):407-413. 被引量:20
  • 4唐孝青,李斌,伍小兵,张亮.绿色荧光蛋白及其应用的研究进展[J].陕西农业科学,2007,53(1):123-124. 被引量:15
  • 5Cormack B. Green fluorescent protein as a reporter of transcription and protein localization in fungi[J]. Curr Opin Microbiol, 1998, 1(4) :406 - 410.
  • 6Fernandez-Abalos J M, Fox H, Pitt C, et al. Plant-adapted green fluorescent protein is a versatile vital reporter for gene expression, protein localization and mitosis in the filamentous fungus, Aspergillus nidulans [J]. Mol Microbiol, 1998, 27 (1):121 -130.
  • 7Suelmann R, Sievers N, Fischer R. Nuclear traffic in fungal hyphae: in vivo study of nuclear migration and positioning in Aspergillus nidulans [J]. Mol Microbiot, 1997, 25 (4) : 757-769
  • 8Vanden Wymelenberg A J, Cullen D, Spear R N, et al. Expression of green fluorescent protein in Aureobasidium pullulans and quantification of the fungus on leaf surfaces[J]. Bio- Techniques, 1997,23 (4) : 686 - 690.
  • 9Beckwith S M, Roghi C H, Morris N R. The genetics of nuclear migration in fungi[M]//Setlow J K, Hollaender A. Genetic engineering; principles and methods. New York: Plenum Press. 1995,165-180.
  • 10Dumas B, Centis S, Sarrazin N, et al. Use of green fluorescent protein to detect expression of an endopolygalaeturonase gene of Colletotrichum lindemuthianum during bean infection[J].Appl Environ Microbiol, 1999,65 (4): 1769 - 1771.

共引文献82

同被引文献182

引证文献17

二级引证文献48

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部