期刊文献+

多刚体系统动力求解的矩阵变换方法 被引量:1

Matrix Transform Method for Dynamic Analysis of Rigid Multibody Systems
下载PDF
导出
摘要 该文提出了求解多刚体系统动力学问题的矩阵变换法,是由带不定乘子的拉格朗日方程为基础推导得到的,其中不含拉格朗日不定乘子和约束反力。利用该方法,可根据无耦合单刚体的动力学参数和系统的速度变换矩阵通过矩阵运算获得多刚体系统的动力学方程。该方法主要面向计算机实现程式化的算法,系统动力方程可由计算机自动生成。文末给出了一个多刚体系统动力求解的例子。 The Matrix transform method for dynamic analysis of rigid multibody systems is presented in the paper. This method is based on the Lagrange multiplier method, but the resulting dynamic equations do not include the Lagrange multipliers and constraint forces. With the aid of the dynamic matrixes of each rigid body in its uncoupled system and the velocity transform matrix for a rigid multibody system, the dynamic equations of the coupled system can be obtained by the matrix operations. The method is especially suitable to programming dynamic analysis by computers. A rigid multibody system is illustrated in the end of the paper.
作者 王良明
出处 《南京理工大学学报》 EI CAS CSCD 1999年第6期503-506,共4页 Journal of Nanjing University of Science and Technology
关键词 刚体力学 动力学 矩阵变换法 多刚体系统 kinematics of rigid body, dynamics, matrix transform methods
  • 相关文献

同被引文献8

  • 1马国忠,明士军,吴海涛.电动自行车安全特性分析[J].中国安全科学学报,2006,16(4):48-52. 被引量:39
  • 2许洪国,苏键,高蔚,高延令.汽车─自行车碰撞速度确定的探讨[J].中国公路学报,1996,9(3):98-103. 被引量:8
  • 3张晓云,金先龙,亓文果,侯心一.基于有限元法和神经网络技术的汽车碰撞事故再现[J].机械工程学报,2007,43(3):143-147. 被引量:16
  • 4Aaron G, Uluc S, Alfred A R. Solving models of controlled dynamic planar rigid body systems with frictional contact [J]. The International Journal of Robotics Research, 2005, 24: 911-920.
  • 5ZHANG Xiao yun, JIN Xian-long, QI Wen-guo, et al. Vehicle crash accident reconstruction based on the analysis 3-D deformation of the auto-body [J]. Advanced in Engineering Software, 2008, 39 (6): 459 - 465.
  • 6ZHANG Xiao-yun, JIN Xian-long, LI Yuan-yin, et al. Improved design of the main energy absorbing automotive parts based on traffic accident analysis [J]. Material & Design, 2008, 29(2):403-410.
  • 7TNO. MADYMO HumanModels Version 6. 2 [M]. Holland: TNO, 2004.
  • 8McHenry B G. Head injury criterion and the ATB [M]. Cary,USA: McHenry Software, Inc, 2004.

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部