摘要
Nanoporous carbons were synthesized using furfuryl alcohol and sucrose as precursors and MCM-41 and mordenite as nanoporous templates.The produced nanoporous carbons were used as adsorbent for methane storage.The average pore diameter of the samples varied from 3.9 nm to 5.9 nm and the BET surface area varied from 320m2/g to 824m2/g.The volumetric adsorption experiments revealed that MCM-41 and sucrose had better performance compared with mordenite and furfuryl alcohol,correspondingly.Also,the effect of precursor to template ratio on the structure of nanoporous carbons and their adsorption capacities was investigated.The nanoporous carbon produced from MCM-41 mesoporous molecular sieve partially filled by sucrose shows the best methane adsorption capacity among the tested samples.
Nanoporous carbons were synthesized using furfuryl alcohol and sucrose as precursors and MCM-41 and mordenite as nanoporous templates.The produced nanoporous carbons were used as adsorbent for methane storage.The average pore diameter of the samples varied from 3.9 nm to 5.9 nm and the BET surface area varied from 320m2/g to 824m2/g.The volumetric adsorption experiments revealed that MCM-41 and sucrose had better performance compared with mordenite and furfuryl alcohol,correspondingly.Also,the effect of precursor to template ratio on the structure of nanoporous carbons and their adsorption capacities was investigated.The nanoporous carbon produced from MCM-41 mesoporous molecular sieve partially filled by sucrose shows the best methane adsorption capacity among the tested samples.