期刊文献+

利用光学显微镜测量布朗运动 被引量:1

Measurement of Brownian Motion Using Optical Microscope
下载PDF
导出
摘要 利用光学显微镜图像采集系统对直径为1μm的聚苯乙烯小球的布朗运动进行了测量。采集得到的图像序列利用Image J软件经过反色,然后利用单粒子跟踪算法插件进行了粒子定位操作。通过对粒子图像序列定位数据的匹配操作得到了典型的粒子布朗运动轨迹,测量得到的粒子扩散系数实验值为(0.504±0.014)μm2/s,与理论值0.522μm2/s相比较,相对误差为3.4%,基本符合良好。液体定向流动、温度测量、采集时间都会对测量结果有影响。对这些相关的实验误差来源进行了分析并指出避免定向流动,控制测量时间能够减小实验误差。 Brownian motion is the random movement of particles suspended in a fluid (a liquid or a gas). By measuring the Brownian motion, many useful physical parameters including diffusion coefficient can be obtained. Optical microscope based CCD image acquisition system is used to measure the Brownian motion of polystyrene particle with a diameter of 1 μm. The recorded image sequences were then processed with its color reverted by Image J software, followed by positioning Brownian motion particles through Single-particle tracking plug-in. By matching the positioning data of the image sequences,typical measured particle Brownian motion trajectories were obtained. Base on the trajectory data, the diffusion coefficient value was calculated to be (0. 504 ±0. 014) μm2/s,with a relative error of 3.4 % compared to the theoretical value 0. 522 μm2/s. The directional flow of the liquid, temperature measurement and acquisition time can influence the measurement. Then, these sources of experimental error were analyzed, which indicated that avoiding directional flow and controlling acquisition time can decrease experimental errors.
作者 冉诗勇
出处 《实验室研究与探索》 CAS 北大核心 2011年第11期15-17,共3页 Research and Exploration In Laboratory
基金 浙江省自然科学基金资助项目(Y4110357) 温州大学研究生教改项目(YJG200909)
关键词 布朗运动 单粒子跟踪 扩散系数 黏滞系数 Brownian motion single-particle tracking diffusion coefficient viscosity coefficient
  • 相关文献

参考文献13

  • 1Einstein A. Investigations on the theory of the Brownian movement [M].NY: Dover,1956:1-119.
  • 2Morters P,Peres Y, Schramm O, et al. Brownian motion [ M ]. UK: Cambridge University Press ,2010 : 118-152.
  • 3Robert M M. Brownian motion: fluctuations, dynamics, and applications [ M ]. NY : Oxford University Press,2009 : 46-61.
  • 4Nelson E. Dynamical theories of Brownian motion [ M ]. USA: Princeton University Press ,967 : 13-17.
  • 5Uhlenbeck G E,Ornstein L S. On the theory of the Brownian motion [J].Phys. Rev,1930,36:823 - 841.
  • 6郝柏林.布朗运动理论一百年[J].物理,2011,40(1):1-7. 被引量:20
  • 7朱雪兰.美丽而精巧的佩兰的布朗运动实验——科学的原子-分子论的最终证实[J].物理通报,2005(8):44-47. 被引量:2
  • 8StachelJ.爱因斯坦奇迹年[M].上海:上海科技教育出版社,2007:67-78.
  • 9Nakroshis P,Amoroso M, Legere J. Measuring Boltzmann' s constant using video microscopy of Brownian motion [J]. American Journal of Physics ,2003,71 (6) : 568-573.
  • 10庞蜜,刘刚钦,茅丽丽,山丽娟,白在桥.一种根据布朗运动测量玻尔兹曼常量的新方法[J].大学物理,2009,28(3):49-51. 被引量:1

二级参考文献19

  • 1彭桓武.分子和原子——从假设到实在[J].物理通报,2005,26(6):1-2. 被引量:3
  • 2蒋长荣,王骁勇,刘树勇.爱因斯坦与布朗运动[J].首都师范大学学报(自然科学版),2005,26(3):28-32. 被引量:7
  • 3杨静,王丽霞.爱因斯坦与布朗运动的数学理论[J].西北大学学报(自然科学版),2006,36(1):169-172. 被引量:7
  • 4[美]Feyman R P,等.费曼物理学讲义(第一卷)[M].郑永令,等译.上海:上海科学技术出版社,2004:422-430.
  • 5.中国大百科全书.物理卷[M].北京:大百科全书出版社,1987..
  • 6阎康年.原子论与近代科学[M].北京:大百科全书出版社,1987..
  • 7.中国大百科全书.哲学卷[M].北京:大百科全书出版社,1987..
  • 8SCHROEDER C M, TEIXEIRA R E, SHAQFEH E S G, et al. Dynamics of DNA in the flow-gradient plane of steady shear flow: Observations and simulations [ J]. Macromolecules,2005, 38 (5) : 1967-1978.
  • 9PARK J S, CHOI C K, KIHM K D. Temperature measurement for a nanoparticle suspension by detecting the Brownian motion using optical serial sectioning microscopy [ J]. Meas. Sci. Technol. ,2005,16 : 1418-1429.
  • 10GITTINGS M R, SAVILLE D A. The determination of hydrodynamic size and zeta potential from electrophoretic mobility and light scattering measurements [J]. Colloids and Surfaces A : Physicochemical and Engineering Aspects 1998, 141: 111- 117.

共引文献24

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部