期刊文献+

具有脉冲干扰和可变时滞的区间关联大系统的鲁棒指数稳定性 被引量:1

ROBUST EXPONENTIAL STABILITY OF INTERVALINTERCONNECTED SYSTEM WITH IMPULSIVE EFFECT AND TIME-VARYING DELAYS
下载PDF
导出
摘要 研究了一类具有脉冲干扰和可变时滞区间关联大系统的鲁棒指数稳定性.假设该系统的关联函数满足全局Lipschitz条件,基于矢量Lyapunov函数法和数学归纳法,给出确保该关联系统鲁棒指数稳定的充分条件.最后给出一个数值算例用以说明本文所得到结论的正确性和有效性. The robust exponential stability for a class of interconnected system in specific parameter intervals with impulsive effect and time-varying delays was studied. On the assumption that the interconnected functions satisfied global Lipschitz condition, some sufficient conditions for the robust exponential stability of the interconnected system were derived by using vector Lyapunov function method and mathematical induction method. A numerical example with simulation results was given to show the correction and effectiveness of the obtained conditions.
出处 《动力学与控制学报》 2011年第4期303-308,共6页 Journal of Dynamics and Control
基金 国家自然科学基金资助项目(11172247 60974132) 教育部博士点基金资助项目(200806130003)~~
关键词 关联系统 鲁棒稳定 脉冲 变时滞 矢量Lyapunov函数 interconnected system, robust stability, function impulsive, time-varying delays, vector Lyapunov
  • 相关文献

参考文献13

  • 1Swaroop D, Hedrick J K. Constant spacing strategies for platooning in automated highway systems. ASME Journal of Dynamic Systems, Measurement and Control, 1999, 121 : 462 - 470.
  • 2任殿波,张继业.基于Lyapunov函数方法的时滞车辆纵向跟随控制[J].控制与决策,2007,22(8):918-921. 被引量:19
  • 3Feddema J T, Lewis C , Schoenwald D A. Decentralized control of cooperative robotic vehicles: theory and applica- tion. IEEE Transactions on Robotics and Automation, 2002,18(5) : 847 -851.
  • 4Giuletti F, Pollini L, Innocenti M. Autonomous Formation Fight. IEEE Control System Magazine, 2000,20 (6) : 34 - 44.
  • 5Stilwell D J, Bishop B E. Platoons of underwater vehicles. IEEE Control System Magazine, 2000,20 (6) : 45 - 52.
  • 6任殿波,张继业.一类时间滞后关联大系统的全局指数稳定性[J].西南交通大学学报,2005,40(3):343-346. 被引量:5
  • 7文海霞.一类时滞非线性动力系统的全局指数稳定性[J].科学技术与工程,2009,9(2):430-432. 被引量:2
  • 8严艳,杨玉华,魏晓燕,卢占会.带有时滞的区间动力系统的鲁棒稳定性研究[J].动力学与控制学报,2008,6(1):1-4. 被引量:4
  • 9Mao W J, Chu J. Quadratic stability and stabilization of dynamic interval systems. IEEE Transactions on Automatic Control, 2003,48(6) : 1007 - 1012.
  • 10Liu X W, Zhang H B, Zhang F L. Delay-dependent sta- bility of uncertain fuzzy Large-scale systems with time de- lays. Chaos, Solitons and Fractals, 2005,26 ( 1 ) : 147- 158.

二级参考文献37

  • 1任殿波,张继业.一类时间滞后关联大系统的全局指数稳定性[J].西南交通大学学报,2005,40(3):343-346. 被引量:5
  • 2ZHENG Yufan, CHEN Guangrong, ZHU Canyan. A system inversion approach to chaos-based secure speech communication [J]. International Journal of Bifurcation and Chaos, 2005, 15 (8) : 2569-2572.
  • 3ARCIA-OJALVO G, ROY R J. Spatiotemporal communication with synchronized optical chaos [J]. Phys. Rev. Lett. , 2001, 86(22): 5204-5207.
  • 4SHORT K M. Steps toward unmasking secure communications [ J ]. International Journal of Bifurcation and Chaos, 1994, 4 (4) : 959- 977.
  • 5FOX J J, JAYAPRAKASH C, WANG D L, et al, Synchronization in relaxation oscillator networks with conduction delays [J]. Neural Comput, 2001, 13(5) : 1003-1021.
  • 6XIE Wenxiang, WEN Changyun, LI Zhengguo. Impulsive control for the stabilization and synchronization of Lorenz systems [J]. Physics Letters A, 2000, 275( 1-2): 67-72.
  • 7LUO Runzi. hnpulsive control and synchronization of a new chaotic system [J]. Physics Letters A, 2008, 372 (8) : 648-653.
  • 8LI K, LAI C H. Adaptive impulsive synchronization of uncertain complex dynamical networks[ J]. Physics Letters A, 2008, 372(10) : 1601-1606.
  • 9SUN Yonghui, CAO Jinde. Adaptive lag synchronization of unknown chaotic delayed neural networks with noise perturbation [J]. Physics Letters A, 2007, 364(3-4) : 277-285.
  • 10SUN Jitao. Delay-dependent stability criteria for time-delay chaotic systems via time-delay feedback control [ J ]. Chaos, Solitons & Fractals, 2004, 21(1) : 143-150.

共引文献28

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部