摘要
考虑了一个具有脉冲耦合的复杂时滞动力网络的同步问题.基于脉冲时滞动力系统扩展的Halanay不等式,给出了网络同步的一个充分条件.所获结果表明,即使网络节点之间仅在一些离散时刻存在瞬时连接,网络仍然能够达到同步.进一步将所得结果应用于一个由混沌FHN神经元振子为动力节点所构成的一个无标度的动力网络,数值仿真结果表明了理论结果的正确性.
This paper considered the synchronization problem in a complex delayed dynamical network with impulsive coupling. A sufficient condition for ensuring network synchronization was derived analytically based on extended Halanay inequality on delayed dynamical systems with impulse. It is shown that such a complex dynamical network can always achieve synchronization even when there exist instantaneous connections among the nodes at a series of instants. Furthermore, the results were applied to a typical scale -free (SF) complex networks consisting of coupled chaotic FHN neuron oscillators, and numerical simulations were carried out to verify and also visualize the theoretical results.
出处
《动力学与控制学报》
2011年第4期348-351,共4页
Journal of Dynamics and Control
基金
国家自然科学基金项目(10972129和10832006)
教育部博士点基金(200802800015)
上海市教委科技创新项目(10ZZ61)
上海市重点学科建设项目(S30106)
铜仁学院科研启动基金项目(TR051
TS10016)资助~~
关键词
复杂时滞动力网络
脉冲耦合
同步
混沌FHN振子
complex delayed dynamical network, impulsive coupling, synchronization, chaotic FHN neuron oscillators