期刊文献+

具有脉冲耦合复杂时滞动力网络的同步 被引量:1

SYNCHRONIZATION IN COMPLEX DELAYED DYNAMICALNETWORKS WITH IMPULSIVE COUPLING
下载PDF
导出
摘要 考虑了一个具有脉冲耦合的复杂时滞动力网络的同步问题.基于脉冲时滞动力系统扩展的Halanay不等式,给出了网络同步的一个充分条件.所获结果表明,即使网络节点之间仅在一些离散时刻存在瞬时连接,网络仍然能够达到同步.进一步将所得结果应用于一个由混沌FHN神经元振子为动力节点所构成的一个无标度的动力网络,数值仿真结果表明了理论结果的正确性. This paper considered the synchronization problem in a complex delayed dynamical network with impulsive coupling. A sufficient condition for ensuring network synchronization was derived analytically based on extended Halanay inequality on delayed dynamical systems with impulse. It is shown that such a complex dynamical network can always achieve synchronization even when there exist instantaneous connections among the nodes at a series of instants. Furthermore, the results were applied to a typical scale -free (SF) complex networks consisting of coupled chaotic FHN neuron oscillators, and numerical simulations were carried out to verify and also visualize the theoretical results.
出处 《动力学与控制学报》 2011年第4期348-351,共4页 Journal of Dynamics and Control
基金 国家自然科学基金项目(10972129和10832006) 教育部博士点基金(200802800015) 上海市教委科技创新项目(10ZZ61) 上海市重点学科建设项目(S30106) 铜仁学院科研启动基金项目(TR051 TS10016)资助~~
关键词 复杂时滞动力网络 脉冲耦合 同步 混沌FHN振子 complex delayed dynamical network, impulsive coupling, synchronization, chaotic FHN neuron oscillators
  • 相关文献

参考文献10

  • 1Strogatz S H. Exploring complex networks. Nature, 2001, 410:268 - 276.
  • 2Barabasi A L, Albert R. Emergence of scaling in random networks. Science, 1999,286 (5439): 509-512.
  • 3Lu W L, Chen T P, Chen G R. Synchronization analysis of linearly coupled systems described by differential equations with coupling delay. Phsica D, 2006,221 (2) , 118 - 134.
  • 4Zhou J, Xiang L, Liu Z R. Synchronization in complex de- layed dynamical networks with impulsive effects. Physica A, 2007,384 (2) ,684 - 692.
  • 5Zhou J, Xiang L, Liu Z R. Global synchronization in gener- al complex delayed dynamical networks and its applica- tions. Physiea A, 2007,385(2) ,729 -742.
  • 6Zhou J, Chen T P. Synchronization in general complex de- layed dynamical networks. IEEE Transactions on Circuits and Systems - I: Regular Papers, 2006,53 ( 3 ) : 733 - 744.
  • 7Jalan S, Amritkar R E. Self - organized and driven phase synchronization in coupled maps. Physical Review Letter, 2003,90( 1 ) :014101.
  • 8苑学梅,陈博文,魏杰,马茜.混沌的Léinard系统的鲁棒同步及应用[J].动力学与控制学报,2010,8(2):128-131. 被引量:2
  • 9Wu Q, Zhou J, Xiang L, Cheng S. Impulsive control and synchronization for a class ot chaotic delayed systems. Pro- ceedings of the 29th Chinese Control Conference, Beijing, 2010:514 - 519.
  • 10Imer O C, Yuksel S, Basar T. Optimal control of LTI sys- tems over unreliable communication links. Automatica, 2006,42(9) ,1429 - 1439.

二级参考文献9

  • 1Wang Y W, Guan Z H, Wang H O. Feedback and adaptive control for the synchronization of Chen system via a single variable. Phys. Lett. A, 2003,312:34 - 40.
  • 2Park Ju H . Adaptive synchronization of hyperchantic Chen system with uncertain parameters. Chaos, Solitorts and Fractals, 2005,26:959 - 964.
  • 3Zhou J, Chen T P, Xiang L. Robust synchronization of delayed neual networks based on adaptive control and parameters identification. Chaos, Solitons and Fractals, 2006, 27 : 905 - 913.
  • 4Sun J T. Impulsive control of a new chaotic system. Math. and Comp. in Simu. , 2004,64:669 -677.
  • 5Chen G , Ed Boca Raton. Controlling chaos and bifurcations in engineering systems. FL : CRC Press, 1999.
  • 6Wei P L.应用非线性控制(英文版).机械工业出版社,2004.
  • 7Zhou J. Boundeeness and convergence of solutions of a second-order nonlinesr differential system. Journal of Mathematical Analysis and Applications, 2001,256 : 360 - 374.
  • 8LaSalle J P. Stability theory for ordinary differential equations. Journal of Differential Equations, 1968,4 : 57 - 65.
  • 9贾贞,邓光明.超混沌Lü系统的线性与非线性耦合同步[J].动力学与控制学报,2007,5(3):220-223. 被引量:12

共引文献1

同被引文献8

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部