期刊文献+

CUDA架构下高效红外图像背景预测方法 被引量:4

Efficient infrared image background prediction in CUDA
下载PDF
导出
摘要 红外图像背景预测方法是红外图像弱小目标探测与跟踪中的经典方法.针对背景预测算法中卷积运算耗时长的问题,提出一种基于CUDA(Compute Unified Device Architecture)的高效红外图像背景预测方法.在分析背景预测算法执行流程的基础上,充分考虑CUDA架构的特点,将其在CUDA架构下进行了重新实现,利用GPU(Graphic Processing Unit)的强大并行计算能力完成红外图像背景预测的快速计算.为了进一步提升算法的运行效率,将不可分离的背景预测卷积模板分解为多个可分离模板的叠加,并给出了分解卷积模板的一般方法.将该方法应用于实际的红外图像背景预测,结果表明,该方法比传统的CPU计算在运算效率上提高了130倍以上. Background prediction in infrared is a classical method for small and dim target detection.Taking account of the convolution's time-consuming property,an efficient method for infrared image background prediction based on CUDA(Compute Unified Device Architecture) is proposed.By considering the feature of CUDA and analyzing the process of background prediction,it is re-realized.Using the framework of CUDA and taking advantage of the powerful parallel computing ability of GPU(Graphic Processing Unit),background prediction from infrared images is rapidly and efficiently completed.For further raising the efficiency of the method,the inseparable convolution matrix used by background prediction is broken up into several separable matrices,where a general method for separating the convolution matrix is presented.Applying this method to actual infrared image's background prediction,the computation efficiency is raised more than 130 times compared with the traditional method based on CPU.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2011年第6期44-51,共8页 Journal of Xidian University
基金 国家航空科学基金资助项目(20090181004)
关键词 红外探测 高效运算 背景预测 分离卷积 CUDA infrared detection high performance computing background prediction separable convolution
  • 相关文献

参考文献11

  • 1汪大宝,刘上乾,张峰.一种新的红外复杂背景自适应抑制算法[J].西安电子科技大学学报,2010,37(5):927-933. 被引量:6
  • 2朱红,赵亦工.基于背景自适应预测的红外弱小运动目标检测[J].红外与毫米波学报,1999,18(4):305-310. 被引量:47
  • 3郭伟,赵亦工,谢振华,李欣.基于非参数统计的云层背景描述与红外弱小目标检测[J].红外与毫米波学报,2008,27(5):383-388. 被引量:17
  • 4李凡,刘上乾,洪鸣,秦翰林.基于背景预测的红外弱小目标检测新算法[J].西安电子科技大学学报,2009,36(6):1075-1078. 被引量:9
  • 5Ren N. GPU-based Monte Carlo Simulation for Light Propagation in Complex Heterogeneous Tissues[ J]. Opt Express, 2010, 18 (7) : 6811-6823.
  • 6Pan Lei, Gu Lixu, Xu Jianrong. Implementation of Medical Image Segmentation in CUDA[ C]//IEEE, International Conference on Information Technology and Applications in Biomedicine. Shenzhen: IEEE, 2008: 82-85.
  • 7Kelly R. GPU Computing for Atmospheric Modeling[ J]. Computing in Science & Engineering, 2010, 12(4) : 26-33.
  • 8Datla S, Gidijala N S. Parallelizing Motion JPEG2000 with CUDA[ C]//IEEE, Second International Conference on Computer and Electrical Engineering. Dubai: IEEE, 2009: 630-635.
  • 9Pachnicke S. Fast Parallel Simulation of Fiber Optical Communication Systems Accelerated by A Graphics Processing Unit[ C]// IEEE, 2010 12th International Conference on Transparent Optical Networks (ICTON). Munich: IEEE, 2010: 1-4.
  • 10冈萨雷斯.数字图像处理[M].北京:电子工业出版社,2003..

二级参考文献28

共引文献208

同被引文献30

  • 1王俊,水鹏朗,保铮,张守宏.基于分数迟延估计的外辐射源雷达杂波相消算法[J].西安电子科技大学学报,2005,32(3):378-382. 被引量:14
  • 2Debatty T. Software Defined RADAR-a State of the Art [C]//Proe of 2nd International Workshop on congnitive Information Processing. Elba Island: IEEE, 2010: 253-257.
  • 3Zhang Hui, Li Lin, Wu Ke. Software-defined Six-port Radar Technique for Precision Range Measurements[J]. IEEE Sensors Journal, 2008, 8(10): 1745-1751.
  • 4Li Zhongzhi, Wang Xuegang, Yu Xuelian. Orthogonal Software Architecture Design for Radar Data Processing System with Object-orientedComponent andCOM Interfaee[J]. WSEA Trans on Computers, 2011, 10(2): 61-70.
  • 5Song J P, Ross J A, Shires D R. Hybrid Core Acceleration of UWB SIRE Radar Signal Processing[J]. IEEE Trans on Parallel and Distributed Systems, 2011, 22(1): 46-57.
  • 6Ren N. GPU-based Monte Carlo Simulation [or Light Propagation in Complex Heterogeneous Tissues[J]. Opt Express, 2010, 18(7): 6811-6823.
  • 7Colone F, Cardinali R, Lombardo P. Cancellation of Clutter and Multipath in Passive Radar Using a Sequential Approach[C]//IEEE International Radar Conference. Piscataway: IEEE, 2006: 393-399.
  • 8Bernaschi M, Di Lallo A, Fulcolí R, et al. Combined Use of Graphics Processing Unit (GPU) and Central Processing Unit (CPU) for Passive Radar Signal and Data Elaboration [C]//Proceedings of the 12th International Radar Symposium. Piscataway: IEEE, 2011: 315-320.
  • 9Richter C, Schps S, Clemens M. GPU Acceleration of Finite Difference Schemes Used in Coupled Electromagnetic/Thermal Field Simulations [J]. IEEE Transactions on Magnetics, 2013, 49(5): 1649-1652.
  • 10Chitchian M, Simonetto A, Keviczky T, et al. Distributed Computation Particle Filters on GPU Architectures for Real-time Control Applications [J]. IEEE Transactions on Control Systems Technology, 2013, 21(6): 2224-2238.

引证文献4

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部