期刊文献+

随机预言模型下可证安全的门限FFS签名方案 被引量:1

Provably secure threshold FFS signature scheme in the random oracle model
下载PDF
导出
摘要 给出了一种随机预言模型下可证适应性安全的门限FFS签名方案的严格安全性证明.在随机预言模型下,若基础的FFS签名方案在选择消息适应性攻击下是不可伪造的,且假设计算模大安全素数的离散对数问题是困难的,证明了该方案是不可伪造的、鲁棒的和适应性安全的. A rigorous security proof of a provably adaptively-secure optimal-resilience threshold Feige-Fiat-Shamir signature scheme based on strong RSA assumption is given.In the case of the random oracle model,if the basic Feige-Fiat-Shamir signature scheme is unforgeable against the adaptive chosen message attack,and computing the discrete logarithm modulo a safe prime is hard,the new scheme can be proved to be unforgeable,robust and secure against adaptive adversary.
出处 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2011年第6期130-133,151,共5页 Journal of Xidian University
基金 先进计划与智能计算省部共建教育部重点实验室开放课题资助项目(ADIC2020002) 国家自然科学基金资助项目(60773121)
关键词 门限密码学 数字签名 可验证秘密共享 可证明安全 适应性安全 threshold cryptography digital signature veriable secret sharing provably secure adaptive security
  • 相关文献

参考文献14

  • 1Desmedt Y. Society and Group Oriented Cryptography: a New Concept[ C]//Proceedings of Advances in Cryptology-CRYPT'87. Berlin: Springer-Verlag Heidelberg, 1987: 120-127.
  • 2Desmedt Y. Threshold Cryptography[ J]. European Trans on Telecommunications, 1994, 5(4): 449-457.
  • 3Feige U, Fiat A, Shamir A. Zero-knowledge Proofs of Identity[J]. Journal of Cryptology, 1988, 1(2): 77-94.
  • 4Abdalla M, Miner S, Namprempre C. Forward Security in Threshold Signature Schemes [ C]//Proceedings of Topics in Cryptology-CT-RSA 2001. Berlin: Springer-Verlag Heidelberg, 2001: 143-158.
  • 5Wang H, Xiao H, Wei S M, et al. An Efficient Adaptively Secure Threshold Feige-Fiat-Shamir Signature Scheme[ C]//2010 Second International Conference on Wireless Networks and Information Systems (WNIS 2010). Chongqing: WNIS, 2010: 171-174.
  • 6Canetti R, Gennaro R, Jarecki S, et al. Adaptive Security for Threshold Cryptosystems[ C]//Proceedings of Advances in Cryptology-CRYPT99[C]. Berlin: Springer-Verlag, 1999: 98-115.
  • 7Chu C K, Liu L S, Tzeng W G. A Threshold GQ Signature Scheme[ C] //Proceedings of Applied Cryptography and Network Security Conference--ACNS 2003. Berlin: Springer-Verlag Heidelberg, 2003: 137-150.
  • 8Goldreich O. A Note on Computational Indistinguishability[ J]. Information Processing Letters, 1990, 34(5): 227-281.
  • 9Gennaro R, Halevi S, Rabin T. Secure Hash-and-sign Signatures without the Random Oracle[ C]//Proceedings of Advances in Cryptology--EUROCRYPT'99. Berlin: Springer-Verlag Heidelberg, 1999: 123-139.
  • 10Cramer R, Shoup V. Signature Schemes Based on the Strong RSA Assumption[ J]. ACM Trans on Information and System Security, 2000, 3(3): 161-185.

同被引文献9

  • 1Abe M, Groth J, Haralambiev K, et al. Optimal Structure-Preserving Signatures in Asymmetric Bilinear Groups [C] // Advances in Cryptology-Crypto 2011: LNCS 6841. Santa Barbara: Springer-Verlag, 2011 : 649-666.
  • 2Garg S, Rao V, Sahai A, et al. Round Optimal Blind Signatures[C]//Advances in Cryptology-Crypto 2011: LNCS 6841 Santa Barbara: Springer-Verlag, 2011: 630-648.
  • 3Chaum D, van Antwerpen H. Undeniable Signatures [C] //Advances in Cryptology-Crypto 1989: LNCS 435. Santa Barbara: Springer-Verlag, 1989: 212-216.
  • 4Krawczyk H, Rabin T. Chameleon Hashing and Signatures[C]//Proc of the Network and Distributed System Security Symposium (NDSS 2000). San Diego: The Internet Society, 2000: 143-154.
  • 5Ateniese G, de Medeiros B. Identity-based Chameleon Hash and Applications [C]//Proc of the 8th International Conference on Financial Cryptography (FC 2004): LNCS 3110. Key West: Springer-Verlag, 2004: 164-180.
  • 6Chen X F, Zhang F, Kim K. Chameleon Hashing Without Key Exposure [C] //Proceeding of the 7th International Conference on Information Security (ISC 2004): LNCS 3225. Palo Alto: Springer-Verlag, 2004: 87-98.
  • 7Ateniese G, de Medeiros B. On the Key Exposure Problem in Chameleon Hashes [C]//Proc of the 4th International Conference on Security in Communication Networks (SCN 2004): LNCS 3352. Amalfi: Springer-Verlag, 2005: 165- 179.
  • 8Chen X, Zhang F, Tian H, et al. Key-exposure Free Chameleon Hashing and Signatures Based on Discrete Logarithm Systems[J].Computers and Electrical Engineering, 2011, 37(4): 614-623.
  • 9卢晓燕.数码防伪技术发展历程及其前景[J].中国防伪报道,2008(2):19-24. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部