期刊文献+

基于脑电棘波频次的癫痫发作预测算法 被引量:2

Seizure Prediction Algorithm Based on Spike Rate in EEG
下载PDF
导出
摘要 癫痫发作预测是近年来在神经科学领域中备受关注的课题。预测癫痫发作可以使医护人员或患者提前采取有效措施来预防和控制癫痫发作,在临床上具有重要意义。棘波是最基本的阵发性异常脑电活动,在分析和统计癫痫发作前期和发作期棘波频次不同表现的基础上,首次提出一种基于脑电棘波频次的癫痫预测算法。对脑电进行滤波以去掉高频干扰后,采用形态学滤波器检测脑电棘波数目,并计算各段脑电中棘波出现的频次,最后根据棘波频次的变化预测癫痫的发作。采用本算法对21例癫痫患者长程颅内脑电进行癫痫预测,准确率达到74.7%,每小时错误预测次数仅为0.111次。结果表明,所提出算法能够有效地预测癫痫发作。 Seizure prediction is a field of great interest in neuroscience communities, because it can make doctors or patients to take effective measures to prevent and control seizures. Spike is the basic paroxysmal EEG activity. In this work the different performance of Spike Rate (SR) was analyzed in preietal and ictal EEG. An algorithm based on SR detection by morphological filtering to predict seizure was proposed and investigated. First, the high frequency artifacts of EEG were removed by filtering. Then, the improved morphological filter was used to detect the spike number and calculate SR (Spike Rate) of every segment of EEG. Finally, seizures were predicted according to the variation of SR. The proposed algorithm was evaluated with long-term EEGs of 21 patients with epilepsy in the experiment, and the sensitivity reached 74.7% with a false prediction rate of 0. 1 l l/h. The results show that the proposed algorithm can predict seizures effectively.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2011年第6期829-833,共5页 Chinese Journal of Biomedical Engineering
基金 国家科技支撑计划项目(2008BAI52B03) 山东省攻关计划项目(2010GSF10243) 山东大学自主创新基金(2009JC004)
关键词 癫痫预测 棘波检测 形态学滤波器 棘波频次 seizure prediction spike detection morphological filter spike rate
  • 相关文献

参考文献15

  • 1Salant Y, Gath I, Henriksen O. Prediction of epileptic seizures from two-channel EEG [ J]. Medical and Biological Engineering and Computing, 1998, 36 (5) :549 - 556.
  • 2Litt B, Esteller R, E chauz J, et al. Epileptic seizures may begin hours in advance of clinical on set: a report of five patients [J]. N 2001, 30(1): 51 -64.
  • 3Gigola S, Ortiz F, D' Attellis CE, et al. Prediction of epileptic seizures using accumulated energy in a multiresolution framework [ J ]. Journal of Neuroscience Methods, 2004, 138 ( 1 - 2) : 107 -111.
  • 4Lehnertz K, Elger CE. Can epileptic seizures be predicted? Evidence from nonlinear time series analysis of brain electrical activity [ J]. Physical Review Letters, 1998, 80 (22) : 5019 -5023.
  • 5Navarro V, Martinerie J, Le Van Quyen M, et al. Seizure anticipation in human neocortical partial epilepsy [ J]. Brain, 2002, 125(3) :640 -655.
  • 6Drury I, Smith B, Li Dingzhou, et al. Seizure prediction using scalp Electroencephalogram [ J ]. Experimental Neurology, 2003, 184(1) : 9 -18.
  • 7Li Dingzhou, Zhou Weiping, Drury I, et al. Non-linear, non- invasive method for seizure anticipation in focal epilepsy [ J]. Mathematical Biosciences, 2003, 186 ( 1 ) : 63 - 77.
  • 8Iasemidis LD, Shiau DS, Pardalos PM, et al. Long-term prospective on-line real-time seizure prediction [ J ]. Clinical Neurophysiology, 2005, 116(3 ) : 532 - 544.
  • 9Dingle AA, Jones RD, Carroll GJ, et al. A multistage system to detect epileptiform activity in the EEG [ J]. IEEE Trans Biomed Eng, 1993,40 (12) : 1260 - 1268.
  • 10Wilson, Emerson R. Spike detection: a review and comparison of algorithms [ J ]. Clinical Neurophysiology, 2002,113 ( 12 ) : 1873 - 1881.

二级参考文献36

  • 1刘少颖,卢继来,郝丽,胡广书.基于数学形态学和小波分解的QRS波群检测算法[J].清华大学学报(自然科学版),2004,44(6):852-855. 被引量:19
  • 2朱非,谢远国,吕扬生.基于数学形态学的QRS波自聚类方法[J].医疗卫生装备,2004,25(8):6-7. 被引量:1
  • 3Miller A S,张永红.神经网络在医学信号处理方面的应用[J].国外医学(生物医学工程分册),1993,16(4):205-212. 被引量:2
  • 4郑玲,叶大田.数学形态学及其在生物医学中的应用[J].国外医学(生物医学工程分册),1994,17(3):125-136. 被引量:11
  • 5Wariar R. Inter coefficient bandpass filter for the simultaneous removal of baseline wander 50Hz and 100Hz interference from the ECG. Med. Biol. Eng. Comp, 1991,29(3) :333 -336.
  • 6Philips W. Adaptive noise removal from biomedical signals using warped polymials. IEEE Trans. Biomed. Eng. , 1996,43(2) :480-492.
  • 7Thakor NV, Zhu YS. Application of adaptive fihering to ECG analysis noise cancellation and arrhythmia detection.IEEE Trans. Biomed. Eng,1991,38(7) :785 -793.
  • 8Stephane G Mallat A theory for muhiresolution signal decompositions : the wavelet representation [ J ]. IEEE Transaction on PAMI,1989,11 (7) :674 -693.
  • 9David L Dohono, Iain M Johnstone. , Ideal spatial adaptation by wavelet shrinkage. [J]. Biometrika, 1994,81.3 :425 - 455.
  • 10E.SKORDALAKS.SYNTACTIC ECG PROCESSING:ARE VIEW[J].Pattern Recognition,1986,19(4):305-313

共引文献29

同被引文献11

引证文献2

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部