期刊文献+

基于自回归模型和关联向量机的癫痫脑电信号自动分类 被引量:3

Automatic Classification of Epileptic EEG Signals Based on AR Model and Relevance Vector Machine
下载PDF
导出
摘要 癫痫脑电信号自动分类方法的研究具有重要意义。基于自回归模型和关联向量机,实现癫痫脑电信号的自动分类。采用自回归模型,进行脑电信号特征提取;通过引入主成分分析和线性判别分析两种特征变换方法,降低特征空间维数;采用关联向量机作为分类器,提高模型稀疏性并可以得到概率式输出。在对波恩大学癫痫研究中心脑电信号的分类中,所提出的方法最高准确率可以达到99.875%;在将特征空间维数降至原始维数的1/15时,分类准确率仍可达到99.500%;采用关联向量机作为分类器,模型稀疏性大幅提高,与支持向量机相比,同等条件下关联向量数仅为支持向量数的几十分之一。所提方法可以很好地应用于癫痫脑电信号的自动分类。 Automatic classification system of epileptic EEG signals is one very important issue. In this paper a new epileptic EEG signal classification method was proposed on the basis of AR model and relevance vector machine. AR model was used to extract EEG features, and then principle components analysis and linear discriminant analysis were adopted to reduce the dimensionality of feature space. In order to obtain a sparser model and a model with probabilistic outputs, relevance vector machine was chosen as classifier. A publicly- available database was used to test the proposed method: the highest accuracy obtained in this paper is 99. 875% ; and even if the dimensionality of feature space is reduced to 1/15 of the original dimensionality, the classification accuracy was still able to reach 99. 500%. The introduction of relevance vector machine makes the model sparser; the number of relevance vectors is just a few tenths of that of support vectors. The results mentioned above suggest that the method can be well applied in epileptic EEG signal classification.
出处 《中国生物医学工程学报》 CAS CSCD 北大核心 2011年第6期864-870,共7页 Chinese Journal of Biomedical Engineering
基金 国家自然科学基金(61074096)
关键词 癫痫 自回归模型 主成分分析 线性判别分析 关联向量机 epilepsy AR model principle components analysis (PCA) linear discriminant analysis (LDA) relevance vector machine
  • 相关文献

参考文献18

  • 1Alkan A, Koklukaya E, Subasi A. Automatic seizure detection in EEG using logistic regression and artificial neural network [ J]. Journal of Neuroscience Methods, 2005, 148 : 167 - 176.
  • 2Subasi A, Alkan A, Koklukaya E, et al. Wavelet neural network classification of EEG signals by using AR model with MLE preprocessing [ J]. Neural Network, 2005, 15:955 - 997.
  • 3Chisci L, Mavino A, Perferi G, et al. Real-Time Epileptic Seizure Prediction Using AR Models and Support Vector Machines [J]. IEEE Trans on Biomed Eng, 2010, 57:1124 - 1132.
  • 4Ubeyli ED. Least squares support vector machine employing model-based methods coefficients for analysis of EEG signals [ J]. Expert Systems with Applications, 2010, 37 : 233 - 239.
  • 5Han Min, Sun Leilei. EEG signal classification for epilepsy diagnosis based on AR model and RVM [ C ] //Wang Jun, Han Min, eds. 2010 International Conference on Intelligent Control and Information Processing. Dalian, Liaoning, China, 2010. 134 - 139.
  • 6Guler I, Guler NF, Ubeyli ED. Recurrent neural networks employing Lyapunov exponents for EEG signals classification [ J]. Expert Systems with Applications, 2005, 29 (3) : 506 - 514.
  • 7Asian K, Bozdemir H, Sahin C, et al. A radial basis function neural network model for classification of epilepsy using EEG signals [ J]. Journal of Medical Systems, 2008, 32(5) : 403 - 408.
  • 8Acir N, Guzelis C. Automatic spike detection in EEG by a two- stage procedure based on support vector machines [ J ]. Computers in Biology and Medicine, 2004, 34(7) : 561 -575.
  • 9邱天爽,郑效来,鲍海平,赵庚申.一种基于支持向量机技术的癫痫脑电棘尖波识别方法[J].生物物理学报,2005,21(4):317-321. 被引量:2
  • 10Lima CAM, Coelho ALV, Chagas S. Automatic EEG signal classification for epilepsy diagnosis with Relevance Vector Machines [ J]. Expert Systems with Applications, 2009, 36: 10054 - 10059.

二级参考文献38

  • 1谭郁玲.临床脑电图与脑电地形图学[M].北京:人民卫生出版社,2001..
  • 2Vapnik V. Translated by Kotz S. Estimation of dependences based on empirical data. New York: Springer-Verlag, 1982.
  • 3Haykin S. Neural networks: a comprehensive foundation.Prentice Hall, Tsinghua University Press, 2001.
  • 4VapnikV(著) 张学工(译).统计学习理论的本质[M].北京:清华大学出版社,2000..
  • 5Scholkopf B, Sung KK, Burges JC, Girosi F, Niyogi P, Poggio T, Vapnik V. Compare support vector machine with gaussian kernels to radial basis function classifiers. IEEE Transactions on Signal Processing, 1997,45(11):2758-2765.
  • 6Platt JC. Fast training of support vector machines using sequential minimal optimization. In: Scholkopf B, Burges C,Smola A J, ed. Advances in kernel methods-support vector learning. Cambridge: MIT Press, 1999. 185-208.
  • 7Wilson SB, Emerson R. Spike detection: a review and comparison of algorithms. Clinical Neurophysiology, 2002,113(12):1873-1881.
  • 8Mase K.Recognition of facial expression from optical flow[J].IEICE Transactions,1991,74(10):3474 - 3484.
  • 9Yacoob Y,Davis L.Recognizing human facial expressions form long image sequences using optical flow[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,1994,16 (6):636 - 642.
  • 10Otsuka T,Ohya J.Recognizing multiple persons facial expressions using HMM based on automatic extraction of significant frames from image sequence[A].In:Proceedings of the International Conference on Image Processing[C],California,USA,1997:546 -549.

共引文献38

同被引文献18

  • 1李小兵,初孟,邱天爽,鲍海平.一种基于时频分析的癫痫脑电棘波检测方法[J].中国生物医学工程学报,2006,25(6):678-682. 被引量:4
  • 2白冬梅,邱天爽,李小兵.样本熵及在脑电癫痫检测中的应用[J].生物医学工程学杂志,2007,24(1):200-205. 被引量:25
  • 3L Iasemidis, D Shiau, W Chaovalitwongse, J Sackellares, P Pardalos, J Principe. Adaptive epileptic seizure prediction system[ J]. IEEE Trans Bi- omed Eng, 2003,50(5) :616 -627.
  • 4Song Yuedong, Jon Crowcrofl, Zhang Jiaxiang. Automatic epileptic seizure detection in EEGs based on optimized sample entropy and extreme learning machine [ J ]. Journal of Neuroseience Methods, 2012,210:132 - 146.
  • 5J Richman, J Moorman. Physiological time series analysis using approximate entropy and sample entropy [ J ]. Am J Physiol, 2000,278 (6) :2039 - 2049.
  • 6Huang Guangbin, Zhu Qinyu, Siew CheeKheong. Extreme learning machine : Theory and applications [ J ]. Neurocomputing, 2006,70( 1/2/3 ) :489 - 501.
  • 7Cao Jiuwen, Lin Zhiping, Huang Guangbin. Self - Adaptive Evo- lutionary Extreme Learning Machine [ J ]. Neural Process Lett, 2012,36:285 -305.
  • 8A K Qin, V L Huang, P N Suganthan. Differential Evolution Al- gorithm with Strategy Adaptation for Global Numerical Optimiza- tion [ J ]. Evolutionary Computation, 2009,13 (2) :398 - 407.
  • 9Ralph G Andrzejak, Klaus Lehnertz, Florian Mormann, Christo- ph Rieke, Peter David, Christian E Elger. Indications of nonlin- ear deterministic and finite - dimensional structures in time series of brain electrical activity: Dependence on recording region and brain state[J]. Physical Review E, 2001,64(6) :061907.
  • 10吴敏,韦志辉,汤黎明,孙玉宝,刘铁兵.一种基于小波变换的脑电信号癫痫特征波的识别算法[J].中国医疗设备,2008,23(4):21-24. 被引量:4

引证文献3

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部