期刊文献+

基于机器学习实现双轮机器人平衡控制的应用研究 被引量:3

Research and Application of Balance Control of two-wheeled Robots Based on Machine Learning
下载PDF
导出
摘要 为了有效地解决双轮机器人平衡控制问题,改善学习时间过长的问题,使双轮机器人具有自学习能力;将机器学习中强化学习算法应用于双轮机器人上,利用内部回归神经网络构造性能评价函数,设计了一种新型控制算法;该算法是一种不需要预测和辨识模型,在模型未知及没有先验经验的条件下,通过自身神经网络的在线学习,以实现对双轮机器人的自学习平衡控制;Matlab仿真以及物理实验表明:该方法能在短时间内成功实现对双轮机器人的自学习平衡控制,且在性能上优于其它学习算法。 In order to effectively solve the problem of balance control and improve learning efficiency in two--wheeled robot, which makes two--wheeled robot has the self--learning ability, this paper present a novel method to balance control of two--wheeled robot by using reinforcement learning in Machine Learning, and construct performance evaluation function by using internal recurrent neural networks. The learning algorithm is that the model of the robot is not available and the agent has no prior knowledge, that is to say, with no prediction and no identification model. Through their own learning neural network online , it can achieve self--learning balance control in two--wheeled robot. The Matlab simulation and physical experiments demonstrate that it can successfully achieve self--learning balance control of two-- wheeled robot System in a short time, and better than other learning algorithms in performance.
作者 孙亮 甘飞梅
出处 《计算机测量与控制》 CSCD 北大核心 2011年第12期2972-2974,共3页 Computer Measurement &Control
基金 国家863计划项目(2007AA04Z226) 北京市教育委员会科技发展计划面上项目(KM200810005016) 北京市教委科技创新平台项目(0020005466018)
关键词 双轮机器人 机器学习 强化学习 内部回归神经网络 two-- wheeled robot machine learning reinforcement learning internally recurrent nets
  • 相关文献

参考文献6

二级参考文献18

  • 1武智宇.血液透析串联血液灌流治疗尿毒症患者皮肤瘙痒的协同护理[J].世界最新医学信息文摘,2019,0(90):301-301. 被引量:5
  • 2马志峰,王从庆.一种基于强化学习的多指手位置控制方法[J].计算机测量与控制,2006,14(7):896-899. 被引量:1
  • 3Glizer V Y. Homicidal chauffeur game with target set in the shape of a circular angular sector: Conditions for existence of a closed barrier [J]. J of Optimization Theory and Applications, 1999, 101 (3): 581-598.
  • 4Guelman M, Shinar J, Green A. Qualitative study of a planar pursuit evasion game in the atmosphere [J]. J of Guidance, Control and Dynamics, 1990, 13 (6): 1136-1142.
  • 5Turetsky V, Shinar J. Missile guidance laws based on pursuit/evasion game formulations [J]. Automatics, 2003, 39 ( 4 ): 607-618.
  • 6Berenji H R, Khedkar P. Learning and tuning fuzzy logic controllers through reinforcements [J]. IEEE Transactions on Neural Networks, 1992, 3 (5): 724- 740.
  • 7Barto A G, Sutton S, Anderson C W. Neuron like adaptive ele ments that can solve difficult learning control problems [J]. IEEE Trans. on Systems, Man, and Cybernetics, 1983, 13 (5) : 834 - 846.
  • 8Derson C W. Learning to control an inverted pendulum using neural networks [J]. IEEE Control System Magazine, 1989, 9 (3): 31-37.
  • 9Kelley H J, Cliff E M , Lutze F H. Pursuit/evasion in orbit [J] . J of the Astronautical Sciences, 1981, 29 (3): 277-288.
  • 10Dayan W P. Q-learning [J]. Machine Learning, 1992, 8 (3): 279-292.

共引文献69

同被引文献36

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部