期刊文献+

室内未知环境下移动机器人特征地图创建研究 被引量:5

Research on Feature Map Building of Mobile Robot in Indoor Unknown Environment
下载PDF
导出
摘要 介绍了在室内未知环境下移动机器人利用激光雷达、电子罗盘和里程计等传感器信息创建特征地图的方法;从激光雷达数据中提取直线特征作为地图的主要环境描述特征,采用构建直线模板的方法对雷达数据进行分簇,通过最小二乘法拟合出相应的直线并对冗余地图线段进行合并,从而得到较精确的特征地图;实验表明该机器人建立的环境特征地图是精确有效的,且与栅格地图相比数据量小,可进一步用于机器人的避障、路径规划等复杂任务。 The method of feature map building for the mobile robot in indoor environment by using multi--sensors information, such as laser rangefinder, electronic compass and odometer, is presented in detail. The line feature extracted from the laser rangefinder is chosen to describe the environment in the map. The laser rangefinder' s data is clustered by creating line templates. The line segments are fitted by Least Square Method and the map' s redundant line segments are merged, then a relative accurate feature map is built in the end. The ex periments results demonstrated that the indoor environmental feature maps built for the robot are accurate and effective. Compared with grid map, the quantity of the feature map data is much smaller. The feature maps can be used in the robot' s future complex tasks, such as obstacles avoidance, path planning and so on.
出处 《计算机测量与控制》 CSCD 北大核心 2011年第12期3044-3046,共3页 Computer Measurement &Control
关键词 移动机器人 地图创建 激光雷达 mobile rohot map building laser rangefinder
  • 相关文献

参考文献4

二级参考文献27

  • 1潘学军,王玉峰,庄严,王伟.基于改进角度直方图和最小二乘法的移动机器人地图构建[J].机器人,2003,25(z1):680-685. 被引量:1
  • 2庄严,徐晓东,王伟.移动机器人几何-拓扑混合地图的构建及自定位研究[J].控制与决策,2005,20(7):815-818. 被引量:25
  • 3岳峰.全区域覆盖自主移动机器人无信标边界生成和识别的研究:[硕士学位论文].南京:南京理工大学,2005.
  • 4Guivant J E,Nebot E M. Optimization of the Simultaneous Localization and Map Building Algorithm for real-time implementation[J]. IEEE Transaction on Robotics and Automation,2001,17(3): 242-257
  • 5Thrun S, Koller D,Ghahmarani Z, et al. Simultaneous Localization and mapping with Sparse Extended Information filters [EB/OL]. Computer Science Technical Report, Carnegie Mellon University,2002
  • 6R S Con,P J Hoon,L Y Hoon,S Y Kouk.Flexible docking mechanism with error-compensation capability for auto recharying system of mobile robot[J].International Journal of Control,Automation and Systems,2008,6(5):731-739.
  • 7Ashokaraj,Immanuel A R.Silson,Peter M G,Tsourdos.Robust sensor-based navigation for mobile robots[J].IEEE Transactions on Instrumentation and Measurement,2009,58(3):551-556.
  • 8González J,Blanco J L,Galindo C,Ortiz-de-Galisteo A.Mobile robot localization based on ultra-wide-band ranging:A particle filter approach[J].Robotics and Autonomous Systems,2009,57(5):496-507.
  • 9Grzonka Slawomir,Plagemann Christian,Grisetti Giorgio.Look-ahead proposals for robust grid-based SLAM with raoblackwellized particle filters[J].International Journal of Robotics Research,2009,28(2):191-200.
  • 10Blanc G,Mezouar Y,Martinet P.Indoor navigation of a wheeled mobile robot along visual routes[A].Proceedings of the IEEE International Conference on Robotics and Automation[C].Spain:IEEE,2005.3365-3370.

共引文献80

同被引文献30

  • 1刘瑜,朱世强,金波.移动机器人Markov定位算法的研究——方向传感器建模新方法[J].浙江大学学报(工学版),2005,39(3):339-341. 被引量:3
  • 2崔康吉,孙宇,张新宁,张世琪.AGV精确定位技术的研究[J].计算机集成制造系统-CIMS,1995,1(4):39-41. 被引量:5
  • 3Burcin B G,Jazizadeh F,Kavulya G. Assessment of target types and layouts in 3 D laser scanning for registration ac- curacy [ J ]. Automation in Construction, 2011 , 20 ( 5 ) : 649-658.
  • 4Henry P, Krainin M, Herbst E, et al. RGB-D mapping: using Kinect-style depth cameras for dense 3D modelingof indoor environments [ J ]. The International Journal of Robotics Research ,2012 ( 5 ) :647-663.
  • 5Newcombe R A,Davison A J ,Izadi S,et al. KineetFusion:re- al-time dense surface mapping and tracking [ C ]//Proceed- ings of the 2011 IEEE International Symposium on Mixed and Augmented Reality. Basel: IEEE,2011 : 127-136.
  • 6Zeng M, Zhao F, Zheng J, et al. A memory-efficient Ki- nectFusion using octree [ C] //Proceedings of the 1st In- ternational Conference on Computational Visual Media. Beijing: [ s. n. ] ,2012:234-241.
  • 7E1-Laithy R A, Huang J D, Yeh M. Study on the use of Microsoft Kinect for robotics applications [ C ]//Procee- dings of the 2012 IEEE/ION Position,Location and Navi- gation Symposium. Myrtle Beach: IEEE ,2012 : 1280-1288.
  • 8Bethencourt A,Jaulin L. 3D reconstruction using interval methods on the Kinect device coupled with an IMU [ J ]. International Journal of Advanced Robotic Systems,2013, 10(2) :1-10.
  • 9Cousins S. Exponential growth of ROS [J]. IEEE Robo- tics and Automation Magazine ,2011,18 ( 1 ) : 19-20.
  • 10Reid R, Cann A, Meiklejohn C. Cooperative multi-robot navigation, exploration, mapping and object detection with ROS [ C ]//Proceedings of 2013 IEEE Intelligent Vehicles SymposiumGold Coast: IEEE,2013 : 1083-1088.

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部