期刊文献+

自适应模型更新的多特征融合目标跟踪算法

Object Tracking Algorithm Based on Adaptive Observation Model Updating and Features Fusion
下载PDF
导出
摘要 针对目标在运动过程中存在遮挡、光照变化、背景因素等复杂情况下的跟踪问题,提出了一种多特征融合的跟踪算法;利用背景加权后的联合直方图来描述目标的灰度和纹理特征信息,提出一种多帧加权组合的模板更新策略,对模板特征分布进行自适应更新,基于当前粒子特征信息可信度加权设计了一种自适应特征融合观测模型,并结合到粒子滤波算法中,从而提高了跟踪算法的场景适应能力;实验结果表明:与基于单一特征的算法相比,该算法的适应性更强,能有效跟踪复杂场景下的运动目标。 When the moving object is occluded, or illumination changed, or there are background disturbances, it is hard to track the moving object. A features fusion method is proposed to solve these problems. Used united histogram to describe the grayseale and vein information of the object, presented a multiple picture model updating, designed a self--adaptive features fusion observational model based on the credible probability weighted of optimal particle features and combine it with particle filter to improve the scene adaptability of the method. The experimental result shows that the availability of this method is superior to those methods based on single feature, and can track moving object effectively in complex scene.
出处 《计算机测量与控制》 CSCD 北大核心 2011年第12期3118-3120,共3页 Computer Measurement &Control
基金 总装备部重点科研项目(2007SC02) 国防预研基金项目(9140A09050708JB3503)
关键词 目标跟踪 特征融合 粒子滤波 自适应观测模型 高斯方差 object tracking features fusion particle filter self--adaption observational model Gauss variance
  • 相关文献

参考文献8

  • 1左军毅,程咏梅,王正平.一种对背景干扰及遮挡鲁棒的视频目标跟踪算法[J].计算机测量与控制,2009,17(11):2292-2294. 被引量:6
  • 2Deguchi K, Kawanaka O, Okatani T. Ohject tracking by the mean -shift of regional color distribution combined with the particle--filter algorithms [A]. Proc of IEEE Int Conf on Pattern Recognition [C]. Cambridge, 2004, (3): 506-509.
  • 3王鑫,唐振民.基于特征融合的粒子滤波在红外小目标跟踪中的应用[J].中国图象图形学报,2010,15(1):91-97. 被引量:17
  • 4Brasnett P, Mihaylova L, Bull D, et al. Sequential Monte Carlo Tracking by Fusing Multiple Cues in Video Sequences [J].Image and Vision Computing, 2007, 25 (8) : 127 - 1227.
  • 5Anup S Sabbi. Object tracking in a stereo system using particle filter [Z]. University of Texas at Arlington. 2005.
  • 6Wang Junqiu, Yasushi Y. Integrating Shape and Color Features for Adaptive Real-time Object Tracking [A]. IEEE International Conference on Robotics and Biomimetics [C]. Kunming, China, Dec 17-20, 2006. WashingtonDC: IEEE, 2006:1-6.
  • 7陈爱斌,蔡自兴,董德毅.一种基于目标和背景加权的目标跟踪方法[J].控制与决策,2010,25(8):1246-1250. 被引量:10
  • 8Katja Nummiaro, Esther Koller--Meier, Luc Van Gool. Axa adaptive color--based particle filter [J]. Image and Vision Computing, 2003, 21: 99-110.

二级参考文献25

  • 1李乡儒,吴福朝,胡占义.均值漂移算法的收敛性[J].软件学报,2005,16(3):365-374. 被引量:88
  • 2田杰,张春华.基于分形的水声图像目标探测[J].中国图象图形学报(A辑),2005,10(4):479-483. 被引量:14
  • 3程建,周越,蔡念,杨杰.基于粒子滤波的红外目标跟踪[J].红外与毫米波学报,2006,25(2):113-117. 被引量:73
  • 4文志强,蔡自兴.Mean Shift算法的收敛性分析[J].软件学报,2007,18(2):205-212. 被引量:48
  • 5周妍,胡波,张建秋.基于粒子滤波器和风险决策跟踪遮挡目标的方法[J].电子学报,2007,35(2):350-353. 被引量:12
  • 6Zhou S K, Chellappa R, Moghaddam B. Visual tracking and recognition using appearance adaptive models in particle filters [J]. IEEE Transactions on Image Processing, 2004. 13 (11): 1491-1506.
  • 7Comaniciu D, Ramesh V, Meer P. Kernel-based object tracking [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2003. 25 (5): 564-577.
  • 8Nummiaro K, Meier E K, Gool L V. An adaptive color-based particle filter [J].Image and Vision Computing, 2003. 21 (1): 99-110.
  • 9Qiang Zhu, Shed Avidan, Mei-Chen Yeh, Kwang-Ting Cheng. Fast human detection using a cascade of histograms of oriented gradients [A]. Proc of IEEE Conference on Computer Vision and Pattern Recognition [A]. New York, USA: IEEE. 2006. 1491-1498.
  • 10Sun Sun-gu. Target detection using local fuzzy thresholding and binary template matching in forward-looking infrared images [ J]. Optical Engineering, 2007,46 ( 3 ) -036402:1-9.

共引文献28

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部