期刊文献+

一类波动方程解的导数损失

Loss of derivatives on a class of wave equations
下载PDF
导出
摘要 研究了一类变系数波动方程的柯西问题的导数损失情况,运用Gronwall不等式建立了关于能量泛函的估计,最终得到波动方程解的导数损失是有限的,并举出实例加以说明. The paper studies the Cauchy problem for wave equations with variable coefficients in the time variable.Under some appropriate conditions on the coefficients a(t),by establishing the estimates of the energy functional,the loss of derivatives to the solution for the Cauchy problem is obtained.An application is also provided.
出处 《西南民族大学学报(自然科学版)》 CAS 2011年第6期875-880,共6页 Journal of Southwest Minzu University(Natural Science Edition)
关键词 波动方程 柯西问题 导数损失 Gronwall不等式. wave equation Cauchy problem loss of derivatives Gronwall inequality
  • 相关文献

参考文献7

  • 1MIZOHATA S. The Theory of Partial Differential Equations[M]. Cambridge: Cambridge University Press, 1973.
  • 2COLOMBINI F DE E. Giorgi Sur les equations hyperboliques avec des coefficients qui ne d6pendent que du temps[J]. Ann Scuola Norm[J]. Sup Pisa CI Sci, 1979, 6: 511-559.
  • 3XIAO JUN LU, MICHAEL.Reissig, Instability behavior and loss of regularity[J]. Advances in phase space analysis of partial differential equations, 2009(1 ): 171-200.
  • 4MICHAEL REISSIG. Does the loss of regularity really appear[J]. Mathematical methods in the applied sciences, 2009(32): 1246-1268.
  • 5REISSIG M. Hyperbolic equations with non-lipschitz coefficients[J]. Dend Sem Mat University, 2003(2): 135-181.
  • 6MASSIMO CICOGNANI, FERRUCCIO COLOMBINI. Modulus of continuity of the coefficients and loss of derivatives in the strictly hyperbolic Cauchy problem[J].Journal of Differential Equations, 2006(221):143-157.
  • 7COLOMBINI F, DEL SANTO D. Well-posedness of the cauchy problem for a hyperbolic equation with non-Lipschitz coefficients [J].Ann Scuola Norm Sup Pisa, 2002(1):327-358.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部