期刊文献+

基于插值预测的快速查找算法 被引量:2

Fast Search Algorithm Based on Interpolation Prediction
下载PDF
导出
摘要 针对二分法的不足,提出了一种基于拉格朗日插值的动态预测查找算法,并将该算法和二分法结合得到改进的插值预测查找算法。改进算法在最坏的情况下,在含有n个元素的有序数列中,查找一个元素的最大循环比较次数为1到[log2n]+1之间,优于二分查找的[log2n]+1,最后从理论上证明了这一结论,并在求解一元高次方程实数解的应用中验证了这一结论。 The binary search algorithm is not enough good,so this paper presented dynamic prediction search algorithm based on Lagrange interpolation,and it combined the algorithm and binary search algorithm and presented an improved interpolation prediction algorithm based on them.In the worst case,it compared times to find an element of an array by using the improved algorithm,and it was proved to be obviously better than binary search algorithm in theory,and at last this conclusion was verified in the application of solving the real number solutions of higher degree equation.
出处 《软件导刊》 2011年第11期63-65,共3页 Software Guide
基金 国家自然科学基金项目(41002115)
关键词 拉格朗日插值 动态预测 改进算法 一元高次方程实数解 Lagrange Interpolation Dynamic Prediction Improved Algorithm the Real Number Solutions of Higher Degree Equation
  • 相关文献

参考文献7

二级参考文献47

  • 1胡吉明,鲜学丰.挖掘关联规则中Apriori算法的研究与改进[J].计算机技术与发展,2006,16(4):99-101. 被引量:59
  • 2Boutilier C, Dean T, Hanks S. Decision-Theoretic planning: Structural assumptions and computational leverage. Journal of Artificial Intelligence Research, 1999,11 : 1-94.
  • 3Hansen EA, Zilberstein S. LAO^*: A heuristic search algorithm that finds solutions with loops. Artificial Intelligence, 2001,129(1-2): 35-62.
  • 4Bonet B, Geffner H. Faster heuristic search algorithms for planning with uncertainty and full feedback. In: Proc. of the 18th Int'l Joint Conf. on Artificial Intelligence. Acapulco: Morgan Kaufmann Publishers, 2003. 1233-1238.
  • 5Dean T, Kaelbling LP, Kirman J, Nicholson A. Planning under time constraints in stochastic domains. Artificial Intelligence, 1995, 76(1-2):35-74.
  • 6Ferguson D, Stentz A. 2004. Focused dynamic programming: Extensive comparative results, Technical Report, CMU-RI-TR-04-13, Pittsburgh: Robotics Institute, Carnegie Mellon University, 2004.
  • 7Barto AG, Bradtke SJ, Singh SP. Learning to act using real-time dynamic programming. Artificial Intelligence, 1995,72(1-2): 81-138.
  • 8Pemberton JC, Korf RE. Incremental search algorithms for real-time decision making. In: Proc. of the 2nd Artificial Intelligence Planning Systems Conf. 1994. 140-145.
  • 9Bonet B, Geffner H. Labeled RTDP: Improving the convergence of real-time dynamic programming. In: Giunchiglia E, Muscettola N, Nau D, eds. Proc. of the ICAPS 2003. AAAI Press, 2003. 12-21.
  • 10McMahan HB, Likhachev M, Gordon GJ. Bounded real-time dynamic programming: RTDP with monotone upper bounds and performance guarantees. In: Proc. of the 22nd Int'l Conf. on Machine learning. 2005.

共引文献68

同被引文献18

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部