摘要
基于显著区域选择和尺度空间主结构,提出了一种新颖的关注区域提取方法。模型中,关注区域提取方法分为三步:首先使用基于显著区域选择方法,利用对目标显著度贡献最大的特征估计图像中目标的大概位置;然后利用尺度空间主结构方法获得当前位置图像的重要结构区域范围以及合适的观测尺度;最后,将前两步中获得的区域范围合并起来作为最后的关注区域。实验结果和比较证明本文提出的模型能够获得较好的目标区域提取结果,更好地为识别模块服务。
This paper developed a new model of region extraction based on salient region detection and scale-space primal sketch.In the proposed model,we extract the region of interest(ROI) in three steps.Firstly,we estimate the extent of object by means of region detection,which considers the feature that contributes most to the saliency map.Secondly,we use the scale-space primal sketch to acquire an explicit representation of the significant image structure which gives a qualitative description of the scales and regions of interest.Finally,we combine the results from the two steps.Applications to extract ROI showed that this new model could lead to better results which can be used for guiding later stage processing.
出处
《软件导刊》
2011年第11期155-158,共4页
Software Guide
关键词
显著区域选择
尺度空间主结构
关注区域
图斑
Salient Region Detection
Scale-Space Primal Sketch
Attended Region
Blob Detector