期刊文献+

巯乙磺酸钠对大肠杆菌生物膜早期黏附及胞外聚合物的影响 被引量:8

Effects of mesna on Escherichia coli biofilm adhesion and extracellular polymeric substances in vitro
下载PDF
导出
摘要 目的研究巯乙磺酸钠对大肠杆菌生物膜(biofilm,BF)早期黏附及胞外聚合物(extracellular polymeric sub-stances,EPS)的影响。方法采用了平板菌落计数法检测高浓度(2 mg/ml)、低浓度(0.5 mg/ml)巯乙磺酸钠在不同时间点对大肠杆菌黏附的影响;采用免疫荧光技术标记多糖和细菌,利用激光扫描共聚焦显微镜定性观察细菌黏附及胞外多糖变化;利用硫酸-苯酚法定量各组细菌胞外多糖的产量;利用考马斯亮蓝染料结合法(Bradford法)测定胞外蛋白含量。结果巯乙磺酸钠干预2、4、6、8 h后,与生理盐水对照组比较,各组黏附细菌数均有所减少(P<0.05),高浓度组较低浓度组更明显(P<0.05);经巯乙磺酸钠干预8 h,经FITC-ConA和PI双染后,激光扫描共聚焦显微镜观察见菌落稀疏,散在分布,胞外多糖减少,稀薄,以高浓度为甚;胞外多糖定量实验中,高浓度组胞外多糖/细菌干质量(13.57±0.59)μg/mg、低浓度组(27.77±0.77)μg/mg,分别与生理盐水对照组(35.73±0.44)μg/mg比较,均降低了胞外多糖的产生(P<0.05),高浓度组较低浓度组更明显(P<0.05);胞外蛋白定量实验中,高浓度组胞外蛋白/细菌干质量(7.76±0.32)μg/mg、低浓度组(17.59±0.86)μg/mg分别与生理盐水对照组(23.31±1.36)μg/mg比较,均降低了胞外蛋白的产生(P<0.05),高浓度组较低浓度组更明显(P<0.05)。结论巯乙磺酸钠可显著减少大肠杆菌黏附及产EPS的能力。 Objective To determine the effect of mesna on the adhesion of Escherichia coli(E.coli) biofilm at early stage and biosynthesis of extracellular polymeric substances(EPS).Methods Standard colony counting method was used to determine the effects of mesna(2 and 0.5 mg/ml) on E.coli adhesion at different time points.After polysaccharides and bacteria were labeled by immunofluorescent technique,the adherence and polysaccharides of E.coli were qualitatively observed by confocal laser scanning microscopy(CLSM).Phenol-sulfuric acid method was used to quantitate the polysaccharides content in each group.Extracellular protein content was determined by Bradford protein assay.Results Compared with normal saline group,the number of adhered bacteria was decreased in 2,4,6 and 8 h after intervention with mesna(P0.05),especially in the high-dose group(P0.05).CLSM based on FITC-ConA and PI staining showed that in 8 h after mesna intervention,the colony distribution of E.coli became rarefactive compared with normal saline group.The content of polysaccharides in biofilm was significantly decreased,especially in the high-dose group.Quantification of polysaccharides showed that total polysaccharides(μg)/dry weight of bacterial(mg) was 13.57±0.59 in the high-dose group and 27.77±0.77 in the low-dose group(P0.05),significantly lower than that of normal saline group(35.73±0.44,P0.05).Quantification of extracellular protein showed that total extracellular protein(μg)/dry weight of bacterial(mg) in high-dose group(7.76±0.32)and low-dose group(17.59±0.86)were significantly lower than in normal saline group(23.31±1.36,P0.05),and there was significant difference between high-dose group and low-dose group(P0.05).Conclusion Mesna decreases the adhesion and EPS formation of E.coli significantly.
出处 《第三军医大学学报》 CAS CSCD 北大核心 2011年第24期2554-2557,共4页 Journal of Third Military Medical University
基金 国家自然科学基金(30772363 81070513)~~
关键词 大肠杆菌 生物膜 巯乙磺酸钠 胞外聚合物 黏附 Escherichia coli biofilm mesna extracellular polymeric substances adhesion
  • 相关文献

参考文献14

  • 1Donlann R M. Biofilms: microbial life on surfaces [J]. Emerg Infect Dis, 2002, 8(9) : 881 -889.
  • 2Anderson G G, Palermo J J, Schilling J D, et al. Intracellular bacteri- al biofilm-like pods in urinary tract infections[J]. Science, 2003, 301 (5629) : 105 - 107.
  • 3Olofsson A C, Hermansson M, Elwing H. N-acetyl-L-cysteine affects growth, extracellular polysaccharide production, and bacterial biofilm formation on solid surfaces [ J ]. Appl Environ Microbiol, 2003, 69 (8) : 4814 -4822.
  • 4Wu X, Wang Y, Tao L. Sulfhydryl compounds reduce Staphylococcus aureus biofilm formation by inhibiting PIA biosynthesis[ J]. FEMS Microbiol Lett, 2011, 316 ( 1 ) : 44 - 50.
  • 5Dobretsov S, Xiong H, Xu Y, et al. Novel antifoulants: inhibition of larval attachment by proteases [ J ]. Mar Biotechnol ( NY), 2007, 9 (3) : 388 -397.
  • 6Wu B, Wang Y, Lee Y H, et al. Comparative eco-toxicities of nano- ZnO particles under aquatic and aerosol exposure modes [J]. Environ Sci Technol, 2010, 44(4) : 1484 - 1489.
  • 7Akiyama H, Huh W K, Fujii K, et al. Confocal laser microscopic observation of glycocalyx production by Staphylococcus aureus in vitro [J]. J Dermatol Sci, 2002, 29(1) : 54 -61.
  • 8Ryder C, Byrd M, Wozniak D J. Role of polysaccharides in Pseudomonas aeruginosa biofilm development [ J ]. Curr Opin Microbiol, 2007, 10(6) : 644 -648.
  • 9Danese P N. Antibiofilm approaches: prevention of catheter colonization[J]. Chem Biol, 2002, 9(8) : 873 -880.
  • 10Vishwakarma V, Josephine J, George R P, et al. Antibacterial copper-nickel bilayers and muhilayer coatings by pulsed laser deposition on titanium [ J ]. Biofouling, 2009, 25 ( 8 ) : 705 - 710.

二级参考文献26

  • 1Cafiso V, Bertuccio T, Santagati M, et al. Presence of the ica operon in clinical isolates of Staphylococcus epidermidis and its role in biofilm production[J]. Clin Microbiol Infect, 2004, 10(12) : 1081 - 1088.
  • 2Branda S S, Vik S, Friedman L, et al. Biofilms: the matrix revisited [J]. Trends Microbiol, 2005, 13 ( 1 ) : 20 - 26.
  • 3Schleheck D, Barraud N, Klebensberger J, et al. Pseudomonas aeruginosa PAOI Preferentially Grows as Aggregates in Liquid Batch Cultures and Disperses upon Starvation[J]. PLoS ONE, 2009: 4(5) : e5513.
  • 4Liu Y. Tay Metabolic response of biofilm to shear stress in fixed-film culture[ J ]. Journal of Applied Microbiology 2001, 90:337 -342.
  • 5Takenaka S, Iwaku M, Hoshino E. Artificial Pseudomonas aeruginosa biofilms and confocal laser scanning microscopic analysis [ J ]. J Infect Chemother, 2001, 7(2) : 87 -93.
  • 6Holt K B, Bard A J. Interaction of silver(I) ions with the respiratory chain of Escherichia coli: an electrochemical and scanning electrochemical microscopy study of the antimicrobial mechanism of micromolar Ag^+[J]. Biochemistry, 2005, 44(39) : 13214 -13223.
  • 7Roe D, Karandikar B, Bonn-Savage N, et al. Antimicrobial surface functionalization of plastic catheters by silver nanoparticles[ J]. J Antimicrob Chemother, 2008, 61 (4) : 869 - 876.
  • 8Greenberg E P. Bacterial communication: tiny teamwork[J]. Nature,2003, 424(6945): 134.
  • 9Doyle T B, Hawkins A C, McCarter L L. The complex flagellar torque generator of Pseudomonas aeruginosa [ J ]. J Bacteriol, 2004, 186 (19) : 6341 - 6350.
  • 10Toutain C M, Caizza N C, Zegans M E, et al. Roles for flagellar stators in biofilm formation by Pseudomonas aeruginosa[ J]. Rec Microbiol, 2007, 158(5) : 471 -477.

共引文献16

同被引文献75

  • 1杨颖,陈卫,田丰伟,张灏,汤坚.产抑菌物质乳杆菌的筛选及性质的研究[J].工业微生物,2006,36(3):13-17. 被引量:15
  • 2Donlan R M.Biofilms:microbial life on surfaces[J].Emerg InfectDis,2002,8(9):881-890.
  • 3Denaro V,Di-Martino A,Longo U G,et al.Effectiveness of a muco-lythic agent as a local adjuvant in revision lumbar spine surgery[J].Eur Spine J,2008,17(12):1752-1756.
  • 4Ludwig U,Riedel M K,Backes M,et al.MESNA(sodium 2-mercap-toethanesulfonate)for prevention of contrast medium-induced nephro-toxicity-controlled trial[J].Clin Nephrol,2011,75(4):302-308.
  • 5Tekeres M,Horvath A,Bardosi L,et al.Clinical studies on the muco-lytic effect of mesna[J].Clin Ther,1981,4(1):56-60.
  • 6Olofsson A C,Hermansson M,Elwing H.N-acetyl-L-cysteine affectsgrowth,extracellular polysaccharide production,and bacterial biofilmformation on solid surfaces[J].Appl Environ Microbiol,2003,69(8):4814-4822.
  • 7Cramton S E,Gerke C,Catz F.In vitro methods to study staphylococ-cal biofilm formation[J].Methods Enzymol,2001,336:239-255.
  • 8Wu X,Wang Y,Tao L.Sulfhydryl compounds reduce Staphylococcusaureus biofilm formation by inhibiting PIA biosynthesis[J].FEMS Mi-crobiol Lett,2011,316(1):44-50.
  • 9Dailey F E,Berg H C.Mutants in disulfide bond formation that disruptflagellar assembly in Escherichia coli[J].Proc Natl Acad Sci U S A,1993,90(3):1043-1047.
  • 10Totsika M,Heras B,Wurpel D J,et al.Characterization of twohomologous disulfide bond systems involved in virulence factor bio-genesis in uropathogenic Escherichia coli CFT073[J].J Bacteriol,2009,191(12):3901-3908.

引证文献8

二级引证文献15

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部