期刊文献+

高分子聚合物微流控细胞芯片的改性研究

Surface modification of polymer microfluidic cell chip
下载PDF
导出
摘要 目的探讨2种不同硅烷化试剂对高分子聚合物材料PDMS芯片的改性效果和改性后芯片在细胞捕获/筛选的初步应用。方法接触角实验考察不同硅烷化试剂处理的PDMS样本亲水性,筛选硅烷化试剂及其浓度,以芯片上的非特异性细胞捕获实验验证筛选结果,并连接抗体构建功能化芯片,进行细胞捕获实验的初步研究。结果 2种硅烷化试剂均对PDMS表面具有改性作用,其中在体积浓度为2%GPTMS处理后的芯片表面测得的接触角值最小,芯片对细胞非特异性吸附为5.3%,固载抗体后芯片对细胞的净捕获率为53.96%。结论本研究筛选出PDMS硅烷化反的试剂为GPTMS,最佳浓度为2%,此条件下材料的亲水性良好,对细胞的非特异性吸附低,可用于功能化细胞捕获芯片的构建。 Objective To determine the effect of two different silylation reagents on surface modification of polydimethylsiloxane(PDMS) polymer microfluidic cell chip and investigate the cell capture/screen initial application of the modified microfluidic chip.Methods Hydrophilicity of samples treated by silylation reagents was measured by contact angle to screen silane reagent and determine optimal concentration.The results were verified by non-specific cell capture experiments.Then immobilized antibody was used to establish functional cell chip for further study on cell capture.Results In this study,both two silylation reagents reduced the non-specific adsorption.GPTMS at 2%(volume concentration) obtained a smallest contact angle and resulted in non-specific adsorption of cells reduced to 5.3%.The capture rate was increased to 53.96% after antibody immobilization.Conclusion An effective silylation reagent GPTMS is screened and its best concentration for surface modification of PDMS chip is 2%.In this condition,PDMS is hydrophilic and has a lower adsorption for non-specific cells.This modification is benefit to preparation of functioned cell capture chips.
出处 《第三军医大学学报》 CAS CSCD 北大核心 2011年第24期2571-2574,共4页 Journal of Third Military Medical University
基金 重庆市科技攻关重点项目(CSTC2009AB5198) 重庆市自然科学基金(CSTC2008BB5292)~~
关键词 PDMS 表面修饰 硅烷化 微流控芯片 Polydimethylsiloxane(PDMS) surface modification silylation microfluidic chip
  • 相关文献

参考文献12

  • 1Zhou J, Ellis A V, Voelcker N H. Recent developments in PDMS surface modification for microfluidic devices [J]. Electrophoresis, 2010, 31(1): 2-16.
  • 2Moorcroft M J, Meuleman W R, Latham S G, et al. In situ oligonucle- otide synthesis on poly(dimethylsiloxane) : a flexible substrate for microarray fabrication [ J ]. Nucleic Acids Res, 2005, 33 ( 8 ) : e75.
  • 3Sibarani J, Takai M, Ishihara K. Surface modification on microfluidic devices with 2-methacryloyloxyethyl phosphorylcholine polymers for reducing unfavorable protein adsorption[J]. Colloids Surf B Biointerfaces, 2007, 54(1) : 88 -93.
  • 4Mastichiadis C, Niotis A E, Petrou P S, et al. Capillary-based immunoassays, inamunosensors and DNA sensors-steps towards integration and muhi-analysis[J]. Trends Anal Chem, 2008, 27(9) : 771 -784.
  • 5陈兴,崔大付,刘长春,李辉.用于血样前处理的BioMEMS微流控芯片[J].传感技术学报,2006,19(05B):1991-1995. 被引量:4
  • 6管潇,张惠静,毕颖楠,张莉,郝敦玲,韦劲宇.微流控免疫芯片富集/捕获肠出血性大肠杆菌O157∶H7的研究[J].第三军医大学学报,2009,31(10):887-890. 被引量:2
  • 7Yakovleva J, Davidsson R, Lobanova A, et al. Microfluidic enzyme immunoassay using silicon microchip with immobilized antibodies and chemiluminescence detection [J]. Anal Chem, 2002, 74 ( 13 ) : 2994 - 3004.
  • 8Roth J, Albrecht V, Nitschke M, et al. Surface functionalization of silicone rubber for permanent adhesion improvement [ J ]. Langmuir, 2008, 24(21 ) : 12603 - 12611.
  • 9Pinto S, Alves P, Matos C M, et al. Poly(dimethyl siloxane) surface modification by low pressure plasma to improve its characteristics towards biomedical applications [J]. Colloids Surf B Biointerfaces, 2010, 81(1): 20-26.
  • 10Luzinov I, Julthongpiput D, Liebmann-Vinson A, et al. Epoxy-terminated self-assembled : Molecular glues for polmer layers [ J ]. Langmuir, 2000, 16(2) : 504 -516.

二级参考文献23

  • 1黄辉,郑小林,蒲晓允.微流控芯片技术在生物学中的应用[J].重庆医学,2006,35(10):950-952. 被引量:5
  • 2Deisingh A K, Thompson M. Strategies for the detection of Escherlchia coli O157:H7 in foods[J]. J Appl Microbiol, 2004, 96(3): 419-429.
  • 3Jing G, Polaczyk A, Oerther D B, et al. Development of a microfluidic biosensor for detection of environmental mycobacteria[ J]. Sens Actuators B Chem, 2007, 123(1) : 614 -621.
  • 4Chen Z, Mauk M G, Wang J, et al. A microfluidic system for salivabased detection of infectious diseases[J]. Ann N Y Acad Sci, 2007, 1098 : 429 -436.
  • 5Ikeda M, Yamaguchi N, Tani K, et al. Rapid and simple detection of food poisoning bacteria by bead assay with a microfluidic chip-based system[J]. J Microbiol Methods, 2006, 67(2) : 241 -247.
  • 6Beyor N, Seo T S, Liu P, et al. Immunomagnetic bead-based cell concentration microdevice for dilute pathogen detection [ J ]. Biomed Microdevices, 2008, 10(6): 909-917.
  • 7Lee W C, Lien K Y, Lee G B, et al. An integrated microfluidic system using magnetic beads for virus detection [J]. Diagn Mierobiol Infect Dis, 2008,60(1):51-58.
  • 8Lee S J, Park J S, Im H T, et al. A microfluidic ATP-bioluminescence sensor for the detection of airborne microbes [J]. Sens Actuators B Chem, 2008, 132(2) : 443 -448.
  • 9Yang L, Banada P P, Chatni M R,et al. A multifunctional micro-fluidic system for dielectrophoretic concentration coupled with inununoeapture of low numbers of Listeria monocytogenes[J]. Lab Chip, 2006, 6(7) : 896 -905.
  • 10Xia N, Hunt T P, Mayers B T, et al. Combined microfluidic-micromaguetic separation of living cells in continuous flow [ J ]. Biomed Microdevices, 2006, 8(4): 299-308.

共引文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部