期刊文献+

心肌缺血下人体心室电生理建模和心电图仿真 被引量:3

Modeling of Electrophysiology and Simulation of ECG under Ischemic Condition in Human Ventricular Tissue
原文传递
导出
摘要 为了分析心肌缺血下心肌细胞电生理变化以及对心室传导波的影响,本文考虑了缺血情况下高钾、酸液过多、局部缺氧的实际情况,开发了一个人体心室缺血模型。基于该模型,文中模拟了不同缺血程度下心内膜细胞、M细胞和心外膜细胞的动作电位(AP),并探讨了心肌缺血的三个单一因素分别对细胞AP的影响,最后定量分析了二维人体左心室组织心肌缺血下心电图(ECG)的改变情况。实验结果表明,在缺血情况下,心肌细胞动作电位时程(APD)均有不同程度的缩短。大多数情况下,缺血区域越大,或者缺血情况越严重,ECG的ST-T波变化幅度也越大。在上述三个心肌缺血因素中,高钾对ST-T波变化起到关键的作用,这与之前在动物模型上得到的实验结论保持一致。 In this paper, to analyze the functional influence of ischemia on cardiac cell electrical activity and subsequently on ventricular electrical wave conduction, a human ventricular ischemic model was developed, which took into account three major pathophysiological components of ischemia, hyperkalaemia, acidosis, and anoxia. This model simulated the action potential (AP) propagations of endocardial, midmycardial and epicardial cells with different levels of isehemia, and the influence of each factor on cell AP was analyzed. Finally the ECG waveform under ischemia was quantified by using a 2D model of human left ventricular tissue based on the anatomical structure of human heart. The experimental results showed that under ischemia action potential durations (APD) were reduced. In most cases, the larger the size of ischemie region or the more severe the ischemic level, the more dramatic the changes in the amplitude of ST-T wave were observed. For the three components of ischemia, hyperkalaemia was the dominant contributor to ST-T wave changes, which was in agreement with the results obtained on animal models.
出处 《生物医学工程学杂志》 EI CAS CSCD 北大核心 2011年第6期1200-1206,共7页 Journal of Biomedical Engineering
基金 国家863项目资助(2006AA01Z308) 国家自然科学基金资助项目(60872099)
关键词 电生理 人体心室 缺血 心电图仿真 Electrophysiology Human ventricle Ischemia ECG simulation
  • 相关文献

参考文献13

  • 1HEIDENREICH E A, RODRIGUEZ J F, DOBLARE M, et al. Electrical propagation patterns in a 3D regionally ischemic human heart, a simulation study[C]. Computers in Cardiology, 2009, Park City, 2009, 36: 665-668.
  • 2WEISS J N, VENKATESH N, LAMP S T. ATP-sensitive K^+ channels and cellular K+ loss in hypoxic and ischaemic mammalian ventricle[J]. The Journal of Physiology, 1992, 447: 649-673.
  • 3FERRERO J M Jr, SAIZ J, FERRERO J M, et al. Simulation of action potentials from metabolically impaired cardiac myoeytes, role of ATP-sensitive K^+ current[J].Circulation Research, 1996, 79: 208-221.
  • 4SHAW R M, RUDY Y. Electrophysiologic effects of acute myocardial ischemia: a mechanistic investigation of action potential conduction and conduction failure[J]. Circulation Research, 1997, 80: 124-138.
  • 5GIMA K, RUDY Y. Ionic current basis of electrocardiographic waveforms: A model study[J]. Circulation Research, 2002, 90: 889-896.
  • 6ASLANIDI O V, CLAYTON R H, LAMBERT J L, et al.Dynamical and cellular electrophysiological mechanisms of ECG changes during ischaemia[J]. Journal of Theoretical Biology, 2005, 237z 369-381.
  • 7RODRIGUEZ B, TRAYANOVA N, NOBLE D. Modeling cardiac ischemia[J]. Annals of the New York Academy of Sciences, 2006, 1080:395-414.
  • 8TEN TUSSCHER K, PANFILOV A V. Alternans and spiral breakup in a human ventrieular tissue model[J]. Am J Physiol Heart Circ Physiol, 2006, 291: 1088-1100.
  • 9TEN TUSSCHER K, NOBLE D, NOBLE P J, et al. A model for human ventrieular tissue[J].Am J Physiol Heart Circ Physiol, 2004, 286: 1573-1589.
  • 10刘泰楗.心肌细胞电生理学[M],北京:人民卫生出版社,2005:89-117.

共引文献2

同被引文献36

  • 1甘世祥,冯济凤,董菲洛,蔡运昌,范寿平,冯端兴.贵州小型猪正常心电图研究[J].贵阳中医学院学报,1996,18(1):21-22. 被引量:7
  • 2余琛琳,刘运忠,陈召威,王春华,顾为望,张嘉宁.西藏小型猪心电图分析[J].动物医学进展,2005,26(12):54-58. 被引量:3
  • 3陈文彬,潘祥林.诊断学[M].6版.北京:人民卫生出版社,2006.520-522.
  • 4Yannopoulos D, Matsuura T, McKnite S, et al. No assisted ventilation cardiopulmonary resuscitation and 24 - hour neurological outcomes in a porcine model of cardiac arrest [J]. Crit Care Med, 2010, 38:254 - 260.
  • 5Kato T, Yasuc T. Angiographic difference in coronary artery of man, dog, pig and monkey [J]. Acta Pathol Jph, 1987, 37 (3) : 361 - 373.
  • 6Ten Tusscher K H W J, Hren R, Panfilov A V. Organization of ventricular fibrillation in the human heart. Circulation Research, 2007, 100(12): 87-101.
  • 7Gray R A, Pertsov A M, Jalife J. Spatial and temporal organization during cardiac fibrillation. Nature, 1998, 392(6671): 75-78.
  • 8Gray R A, Jalife J, Panfilov A V, et d. Mechanisms of cardiac fibrillation. Science, 1995, 270(5239): 1222-1223.
  • 9Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952. 117(4): 500-544.
  • 10Colli-Franz~ne P, Pavarino L F, Taccardi B. Simulating patterns of excitation, repolarization and action potential duration with cardiac bidomain and monodomain models. Math Biosci, 2005, 197 (1): 35-66.

引证文献3

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部