期刊文献+

改良酶学方法获得异种血管脱细胞支架 被引量:1

In vitro construction of decellularized vascular xenograft by improved enzymatic method
下载PDF
导出
摘要 背景:扩大脱细胞基质的孔径与孔隙率,保证其作为移植物的力学特性,是目前血管组织工程研究的热点之一。目的:观察改良的酶学方法处理异种血管的力学性能和组织相容性。方法:取猪的颈动脉作为基质,采用传统胰蛋白酶-EDTA加1%TritonX-100和0.1%氨水顺序脱细胞方案,并做了适当的方法改进,延长胰酶处理的时间,分别为胰酶处理4h,5h,6h。结果与结论:经组织学分析,脱细胞基质中无细胞成分,脱细胞的支架结构完整,随着胰酶处理时间的延长,其基质内弹力板破坏明显,孔径和孔隙率逐渐增大,缝合强度与爆破强度相对于自然血管虽略有降低,但差异无显著性意义。组织成分胶原蛋白含量也有所下降,尤其胰酶延长至6h组,其胶原蛋白含量明显低于正常未处理的自然血管(P<0.05)。结果显示延长胰蛋白酶处理时间后得到的脱细胞血管基质,具有良好的孔隙率、生物力学性能和组织相容性。 BACKGROUND: How to expand the pore size and porosity of the acellular matrix to facilitate the post-cell re-cultivation requirement, and simultaneously the graft must ensure its mechanical requirements, is one of the hotspots in vascular tissue engineering. OBJECTIVE: To observe the mechanical properties and histocompatibility of decellularized vascular xenograft vascular grafts constructed by the improved enzymatic method. METHODS: Porcine carotid arteries were decellularized using conventional trypsin-EDTA plus 1% TritonX-100 and 0.1% ammonia in order for 4, 5, and 6 hours. RESULTS AND CONCLUSION: Porcine carotid arteries were decellularized by trypsin, ammonium hydroxide and non-ionic detergent to extract all the cell components of the grafts successfully. To obtain better pore size and porosity of the acellular scaffold, we changed the methods by extending the time of trypsin. By extending the time of trypsin methods, the better pore size and porosity of the acellular scaffold was obtained. Biomechanics, porosity characteristics of scaffold can meet the requirements of tissue engineered vessel.
出处 《中国组织工程研究与临床康复》 CAS CSCD 北大核心 2011年第47期8769-8772,共4页 Journal of Clinical Rehabilitative Tissue Engineering Research
基金 国家高技术研究发展计划(863计划)资助项目:"小口径组织工程血管的基础及应用研究"(2006AA02A134) 北京市自然科学基金资助项目:"多孔脱细胞小口径组织工程动脉支架及其再细胞化研究"(5082007)和"在体靶向自组装小口径组织工程动脉的初步研究"(2103049)~~
  • 相关文献

参考文献17

  • 1池一凡,林明山,孙龙,侯文明,孙忠东,牛兆倬,孙勇,生伟.猪脱细胞血管基质的制备及其生物学性状检测[J].中国组织工程研究与临床康复,2008,12(32):6292-6295. 被引量:8
  • 2Nieponice A,Soletti L,Guan J,et al.Development of a tissue-engineered vascular graft combining a biodegradable scaffold,muscle-derived stem cells and a rotational vacuum seeding technique.Biomaterials.2008;29(7):825-833.
  • 3吕玉明,黄华梅,王秋玲,谢德明.应用猪主动脉脱细胞基质制备新型组织工程血管支架:生物相容性及力学性能评价(英文)[J].中国组织工程研究与临床康复,2010,14(47):8921-8926. 被引量:3
  • 4Lu Q,Ganesan K,Simionescu DT,et al.Novel porous aortic elastin and collagen scaffolds for tissue engineering.Biomaterials.2004;25(22):5227-5237.
  • 5Dahl SL,Koh J,Prabhakar V,et al.Decellularized native and engineered arterial scaffolds for transplantation.Cell Transplant.2003;12(6):659-666.
  • 6Schmidt CE,Baier JM.Acellular vascular tissues:natural biomaterials for tissue repair and tissue engineering.Biomaterials.2000;21(22):2215-2231.
  • 7Zhu C,Ying D,Mi J,et al.Development of anti -atherosclerotic tissue-engineered blood vessel by A20-regulated endothelial progenitor cells seeding decellularized vascular matrix.Biomaterials.2008;29(17):2628-2636.
  • 8李春.脱细胞组织基质材料构建组织工程血管支架的特点与效应[J].中国组织工程研究与临床康复,2010,14(47):8853-8856. 被引量:1
  • 9Schultz SS,Abraham S,Lucas PA.Stem cells isolated from adultrat muscle differentiate across all three dermal lineages.WoundRepair Regen.2006;14(2):224-231.
  • 10Hoerstrup SP,Cummings Mrcs I,Lachat M,et al.Functional growth in tissue-engineered living,vascular grafts:follow-up at 100 weeks in a large animal model.Circulation.2006;114(1 Suppl):159-166.

二级参考文献76

  • 1杨松林,谷涌泉,汪忠镐,张建,陈兵,王连才,姜明,郑江红,刘庆阳.三种人工合成可降解血管支架材料体外生物相容性及表面改性研究[J].第二军医大学学报,2006,27(4):400-404. 被引量:8
  • 2韩本松,范存义,刘生和.表面纳米仿生改性的组织工程血管支架材料对猪血液相容性的影响[J].中华医学杂志,2006,86(29):2065-2068. 被引量:7
  • 3武欣,谷涌泉,张建,陈兵,齐立行,郭连瑞,李建新,李学锋,罗涛,崔世军,汪忠镐.生物血管异种移植的初步研究[J].中国实验动物学报,2007,15(1):39-42. 被引量:9
  • 4Shalak R,Fox CF.Preface.In:Tissue Engineering[M].Shalak R,Fox CF,eds.Alan R.Liss,New York.1998,26-29.
  • 5Kanshal S,Amiel GE,Guleserian KJ,et al.Functional smalldiameter neovessels created using endothelial progenitor cells expanded ex vivo[J].Nat Med.2001,7(9):1035-1040.
  • 6Dahl SL,Koh J,Prabhekar V,et al.Decellularized native and engineered arterial scaffolds for transplantation[J].Cell Transplant.2003,12(6):659-666.
  • 7Langer R,Vacanti JP.Tissue engineering[J].Science 1993,260:920-926.
  • 8Fields C,Cassano A,Makhoul RG,et al.Evaluation of electrostatically endothelial cell seeded expanded polytetrafluoroethylene grafts in a canine femoral artery model[J].J Biomatcr Appl,2002,17:135-152.
  • 9Veves A,Akbari CM,Primavera J,et al.Endothelial dysfunction and the expression of endothelial nitric oxide synthetase in diabetic neuropathy,vascular disease,and foot ulceration[J].Diabetes.1998,47(3):457-463.
  • 10Schmidt CE,Baler JM.vascular tissues:natural biomaterials for tissue repair and tissue engineering[J].Biomaterials.2000;21:2215 -2231.

共引文献17

同被引文献19

  • 1陈晓波,吴英锋,段红永,武欣,陈兵,张淑文,谷涌泉,汪忠镐.不同方法制备脱细胞血管基质的比较[J].中华临床医师杂志(电子版),2011,5(20):6098-6101. 被引量:3
  • 2张春梅,田洪玲,赵洁,腾云,余绍芬,孙新君.肝素抗凝材料联合血管束植入修复骨缺损的血管化[J].中国组织工程研究,2013,17(21):3944-3951. 被引量:2
  • 3Ye X, Hu X, Wang H, et al. Polyelectrolyte multilayer film on decellularized porcine aortic valve can reduce the adhesion of blood cells without affecting the growth of human circulating progenitor cells [J]. Acta Biomaterialia, 2012, 8 (3) : 1057 - 1067.
  • 4Chen H, Bai S, Chen Y. Effect of tissue engineering small vessel scaffolds in experimental animals [ J ]. Tissue Engineer- ing and Regenerative Medicine, 2012, 9 (3) : 109 -115.
  • 5Li Q, Huang C, Xu Z, et al. The fetal porcine aorta and mesenteric acellular matrix as small-caliber tissue engineering vessels and microvasculature scaffold [J]. Aesthetic Plastic Surgery, 2013, 37 (4) : 822 -832.
  • 6Zhou M, Liu Z, Liu C, et al. Tissue engineering of small-diameter vascular grafts by endothelial progenitor cells seeding heparin-coated decellularized scaffolds [ J ]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2012, 100 (1): 111-120.
  • 7Tsai T N, Kirton J P, Campagnolo P, et al. Contribution of stem cells to neointimal formation of deeellularized vessel grafts in a novel mouse model [J]. The American Journal of Pathology, 2012, 181 (1) : 362 -373.
  • 8Kadner A, Hoerstrup S P, Zund G, et al. A new source for cardiovascular tissue engineering: human bone marrow stromal cells [J]. European Journal of Cardio-thoracic Surgery, 2002, 21 (6) : 1055 - 1060.
  • 9Hilfiker A, Kasper C, Hass R, et al. Mesenchymal stem cells and progenitor cells in connective tissue engineering and re- generative medicine: is there a future for transplantation? [ J]. Langenbeck: Archives of Surgery, 2011, 396 (4) : 489 - 497.
  • 10Krawiec J T, Vorp D A. Adult stem cell-based tissue engineered blood vessels: a review [ J]. Biomaterials, 2012, 33 (12) : 3388 -3400.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部