期刊文献+

Self-adapting Scalable Differential Evolution Algorithm

Self-adapting Scalable Differential Evolution Algorithm
下载PDF
导出
摘要 Differential evolution(DE) demonstrates good convergence performance,but it is difficult to choose trial vector generation strategies and associated control parameter values.An improved method,self-adapting scalable DE(SSDE) algorithm,is proposed.Trial vector generation strategies and crossover probability are respectively self-adapted by two operators in this algorithm.Meanwhile,to enhance the convergence rate,vectors selected randomly with the optimal fitness values are introduced to guide searching direction.Benchmark problems are used to verify this algorithm.Compared with other well-known DE algorithms,experiment results indicate that this algorithm is better than other DE algorithms in terms of convergence rate and quality of optimization. Differential evolution ( DE ) demonstrates good convergence performance, but it is difficult to choose trial vector generation strategies and associated control parameter values. An improved method, self-adapting scalable DE (SSDE) algorithm, is proposed. Trial vector generation strategies and crossover probability are respectively self-adapted by two operators in this algorithm. Meanwhile, to enhance the convergence rate, vectors selected randomly with the optimal fitness values are introduced to guide searching direction. Benchmark problems are used to verify this algorithm. Compared with other well-known DE algorithms, experiment results indicate that this algorithm is better than other DE algorithms in terms of convergence rate and quality of optimization.
出处 《Journal of Donghua University(English Edition)》 EI CAS 2011年第4期384-390,共7页 东华大学学报(英文版)
基金 National Natural Science Foundation of China (No. 70971020)
关键词 differential evolution (DE) SCALABLE self-adapting parameter control function optimization 微分进化(DE ) ;可伸缩;自我改编;参数控制;功能优化;
  • 相关文献

参考文献12

  • 1J. Liu,J. Lampinen.A Fuzzy Adaptive Differential Evolution Algorithm[J]. Soft Computing . 2005 (6)
  • 2Rainer Storn,Kenneth Price.Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces[J]. Journal of Global Optimization . 1997 (4)
  • 3Das S,Suganthan P N.Differential Evolution: a Survey of the State-of-the-Art. IEEE Transactions on Evolutionary Computation . 2011
  • 4Zhang J Q,Sanderson A C.JADE: Adaptive Differential Evolution with Optional External Archive. IEEE Transactions on Evolutionary Computation . 2009
  • 5Brest J,Greiner S,Boskovic B,et al.Self-adapting Control Parameters in Differential Evolution: a Comparative Study on Numerical Benchmark Problems. IEEE Transactions on Evolutionary Computation . 2006
  • 6Qin A K,Huang V L,Suganthan P N.Differential Evolution Algorithm with Strategy Adaptation for Global Numerical Optimization [ J ]. IEEE Transactions on Evolutionary Computation . 2009
  • 7Zhang Y N,Wang J.A Dual Neural Network for Convex Quadratic Programming Subject to Linear Equality and Inequality Constraints. Physics Letters . 2002
  • 8Das S,Konar A."Design of two dimensional IIR filters with modern search heuristics:a comparative study". International Journalof Computational Intelligence and Applications . 2006
  • 9DAS S,ABRAHAM A,KONAR A.Automatic clustering using an im-proved differential evolution algorithm. IEEE Trans on Sys-tems,Man,and Cybernetics-Part A:Systems and Humans . 2008
  • 10Y. Zhang,W. Ma,X. Li,H. Tan,K. Chen.MATLAB Simulink modeling and simulation of LVI-based primal-dual neural network for solving linear and quadratic programs. Neurocomputing . 2009

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部