期刊文献+

基于四类运动想象任务的脑电信号识别 被引量:2

Classification of four-class imaginary movements in electroencephalogram
下载PDF
导出
摘要 背景:脑-机接口是在大脑与外部设备之间建立的直接的交流通路,基于运动想象的脑-机接口研究已经从两类运动想象任务的识别发展到多类任务的识别。目的:探寻准确有效的对多任务运动想象脑电信号进行特征提取及模式识别的方法。方法:首先采用公共平均参考法减小多通道中各导联间的相关性,提高脑电信号的信噪比。并对公共空间模式算法进行扩展,采用"一对多"的策略,对4类任务的脑电信号进行特征提取,在模式识别过程中,采用基于决策树法的支持向量机进行分类。对于实验对象样本不充足,结合支持向量机和贝叶斯分类器,将分类结果中具有大概率的测试样本扩充到训练集,最后再次运用支持向量机进行分类。结果与结论:最佳正确率达到92.78%,"一对多"的公共空间模式和基于决策树的支持向量机可以有效地进行多任务脑电信号识别,扩充样本可以提高分类正确率。 BACKGROUND:Brain-computer interface(BCI) has provided a direct communication pathway between brain and external devices.The BCI based on motor imagery research has developed from classification of the two types to classification of multi-class.OBJECTIVE:To investigate accurate and effective method for extracting and classifying electroencephalogram(EEG) for multi-class imagery movement.METHODS:First,the common average reference method was used to reduce the correlation among leads and improve the signal to noise ratio of EEG signal.The one versus the rest common spatial patterns(OVR-CSP) was used to extract the feature of EEG data,then use support vector machine of decision tree to classify the feature data.For the insufficient sample,combined with support vector machines and Bayesian classifier,expanded to the training set form the test set with a high probability of classification results,and finally re-classified by using support vector machines.RESULTS AND CONCLUSION:The best accuracy was 92.78%.The OVR-CSP and the decision tree based on support vector machine could effectively identify multi-class EEG signal,and the expansion of the sample could improve classification accuracy.
出处 《中国组织工程研究与临床康复》 CAS CSCD 北大核心 2011年第48期9003-9006,共4页 Journal of Clinical Rehabilitative Tissue Engineering Research
基金 广东省科技计划项目(2009B030801004) 课题名称:面向社区家庭的医疗服务与检测仪器~~
  • 相关文献

参考文献30

  • 1Wolpaw JR,Birbaumer N,McFarland DJ,et al.Brain-computer interface for communication and control.Clin Neurophysiol.2002;113:767-791.
  • 2Birbaumer N.Breaking the silence:Brain-Computer interfaces (BCI) for communication and motor control.Psychophysiology.2006;43:517-532.
  • 3Virts J.The third international meeting on brain-computer interface technology:making a difference.IEEE Trans Neural Syst Rehabil Eng.2006; 14(2):126-127.
  • 4王新光,邹凌,段锁林,周仁来.脑机接口技术的研究与进展[J].中国组织工程研究与临床康复,2008,12(39):7722-7724. 被引量:8
  • 5Blankertz B,Tomioka R,Lemm S,et al.Optimizing spatial filters for robust EEG ringle-trial analysis.IEEE Signal Process Magaz.2008,25(1):41-56.
  • 6高上凯.浅谈脑—机接口的发展现状与挑战[J].中国生物医学工程学报,2007,26(6):801-803. 被引量:70
  • 7Lotte F,Congedo M,Lecuyer A,et al.A review of classifycation algorithms for eeg-based brain-computer interfaces.J Neural Eng.2007;4(2):R1-R13.
  • 8Liao X,Yao DZ,Li CY.Combining spatial filters for the classification of single-trial EEG in a finger movement task.IEEE Trans Biomed Eng.2007;54(5):821-831.
  • 9Pfurtscheller G,da Silva Lopes FH.Event-related EEG/MEG synchronization and desynchronization:basic principles.Clin Neurophysiol.1999;110(11):1842-1857.
  • 10黄思娟,吴效明.基于Mu/Beta节律想象运动脑电信号特征的提取[J].中国组织工程研究与临床康复,2010,14(43):8061-8064. 被引量:10

二级参考文献106

共引文献224

同被引文献16

  • 1Schlgl A, Lee F, Bischof H, et al. Characterization of four-class motor imagery EEG data for the BCI-competition 2005[J]. Journal of neural engineering, 2005, 2(4): L14-22.
  • 2Hu Dingyin, Li Wei, Chen Xi. Feature extraction of motor imagery EEG signals based on wavelet packet decomposition[C]// IEEE.Complex Medical Engineering (CME), 2011 IEEE/ICME International Conference on., Harbin, Heilongjiang, 2011: 694-697.
  • 3Park C, Looney D, Naveed ur Rehman, et al. Classification of motor imagery BCI using multivariate empirical mode decomposition[J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering,2013, 21(1): 10-22.
  • 4Shanz-Lin Wu, Chun-Wei Wu, Pal N R, et al. Common spatial pattern and linear discriminant analysis for motor imagery classification[C]//IEEE.2013 IEEE Symposium on Computational Intelligence, Cognitive Algorithms, Mind, and Brain (CCMB),Singapore,2013: 146-151.
  • 5Torkkola K. Feature extraction by non parametric mutual information maximization[J]. The Journal of Machine Learning Research, 2003, 3: 1415-1438.
  • 6李明爱,刘净瑜,郝冬梅.基于改进CSP算法的运动想象脑电信号识别方法[J].中国生物医学工程学报,2009,28(2):161-165. 被引量:38
  • 7尧德中,刘铁军,雷旭,杨平,徐鹏,张杨松.基于脑电的脑-机接口:关键技术和应用前景[J].电子科技大学学报,2009,38(5):550-554. 被引量:45
  • 8甘亚辉,戴先中.基于遗传算法的多机器人系统最优轨迹规划[J].控制理论与应用,2010,27(9):1245-1252. 被引量:27
  • 9暴励,曾建潮.一种双种群差分蜂群算法[J].控制理论与应用,2011,28(2):266-272. 被引量:53
  • 10刘路,王太勇.基于人工蜂群算法的支持向量机优化[J].天津大学学报,2011,44(9):803-809. 被引量:55

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部