摘要
对于正态线性试验NL(Xβ,δ~2V),V为已知κ×n阶正定矩阵,δ~2为未知正参数,通过容许性理论,在平方损失函数(δ~2+β~rX^rV^(-1)Xβ)^(-1)‖δ-SXβ‖下,本文证明了SXβ的线性估计是所有估计类中一致最小最大估计。
For the normal linear experiment NL( Xβ, σ2 V) where V is a known k × n positive definite matrix, σ2 is a unknown positive paremeter, under qudratic loss function [σ2 +βrXrV-1Xβ-1||δ - SXβ|| , by the theory of admissibility, this paper proves that a linear estimator for SXβ is the unique minimax estimator inb the class of all eatimators.
关键词
正态线性试验
可估线性函数
最小最大估计
normal linear experiment, quadratic loss, estimable linear function, ninimax estimator, admissibility theorey