期刊文献+

含参有理函数族M集的拓扑不变特性 被引量:2

Investigation on the Fixed Topological Characters of the M Set of the One Parameter Rational Functions
下载PDF
导出
摘要 利用Newton 法对应的有理函数族给出一系列新的广义Mandelbrot 集和Julia 集,通过计算机研究了它们与典型Mandelbrot 集和Julia 集之间的关系,并对Mandelbrot 集与Julia 集之间的关系进行了分析,解析分析了广义Mandelbrot 集的有界性、芽苞周期和不同周期芽苞个数,为Mandelbrot 集和Julia 集的发展提供了新的思路· A series of general Mandelbrot sets of the rational functions with one parameter coming from Newton's method were constructed. The relationship between the general Mandelbrot sets and the common Mandelbrot sets was discussed. The boundaries of these general Mandelbrot sets and two formulas for calculating the number of period of general Mandelbrot sets were given out. A new way was provided to develop the Mandelbrot and Julia sets.
出处 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 1999年第6期576-579,共4页 Journal of Northeastern University(Natural Science)
基金 国家教育部博士点基金 辽宁省自然科学基金
关键词 拓扑不变特性 含参有理函数族 J集 M集 分形几何 critical point, general Mandelbrot set, Julia set.
  • 相关文献

同被引文献18

  • 1王兴元,刘威.利用陷阱技术构造伪3D牛顿变换的M-J集[J].计算机辅助设计与图形学学报,2005,17(4):754-760. 被引量:7
  • 2Mandelbrot B B. The fractal geometry of nature [M]. New York: Freeman, 1983.
  • 3Cherbit G. Fraetals: non-integral dimensions and applications [M]. New York: John Wiley & Sons, 1987.
  • 4Bannsley M F, Devaney R L, Mandelbrot B B, et al. The science of fractal images [M]. Berlin: Springer, 1988.
  • 5Peitgen H O, Richter P H. The beauty of fractals [M]. Berlin: Springer, 1986.
  • 6Liaw S S. Find the Mandelbrot like sets in any mapping [J]. Fractals, 2002, 10(2): 137-146.
  • 7Rojas R. A tutorial efficient computer graphic representations of the Mandelbrot set [J]. Computers Graphics, 1991, 15(1): 91-100.
  • 8Devaney R L, Keen L. Chaos and fractals: the mathematics behind the computer graphics [C] //Proceedings of Symposia in Applied Mathematics, Rhode Island, 1988:75-104.
  • 9Blanchard P. Complex analytic dynamics on the Riemann sphere [J]. Bulletin (New Series) of the American Mathematical Society, 1984, 11(1): 85-141.
  • 10朱伟勇,刘向东.计算机构造Julia-集盒维数回归估计[J].东北大学学报(自然科学版),1997,18(2):183-186. 被引量:2

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部