摘要
提出TS型模糊RBF神经网络模型,并将该网络模型应用于多变量控制系统,构成多变量自适应控制器.同时对网络结构和参数的学习算法及网络参数的在线自学习算法进行研究.仿真结果表明本文提出的学习方法是有效的。
A new type of Takagi-Sugeno(T-S) fuzzy radial basis function (RBF) neural network was proposed and applied to multi-variable control. The cluster algorithm of parameters and structure of the network and the online self-learning algorithm were also discussed. Simulation results indicate that these algorithms are effective and the T-S fuzzy RBF network controller has good adaptability.
出处
《广东工业大学学报》
CAS
1999年第4期10-16,共7页
Journal of Guangdong University of Technology
关键词
模糊控制
神经网络
多变量控制
自适应控制
fuzzy control
the RBF neural network
multi-variable control
adaptive control.