期刊文献+

基于Gassing模型的锂电池SOC估计与参数辨识

LIB SOC estimation and parameters identification based on gassing model
下载PDF
导出
摘要 具有非线性、时变性的Gassing锂电池模型具有以下两大特点:模型考虑了析气现象,使其适用范围拓广到SOC>85%的临界情况;模型考虑了温度的动态变化对系统状态变量的影响。针对该模型,基于相关的试验数据,采用双Kalman滤波算法(DKF),同时实现了对模型参数的辨识和对SOC的在线估计。台架试验和实车验证表明,该算法在非临界情况和临界情况下均可以较准确地在线估计SOC(估计误差在4%以内),并且对SOC的初值误差具有较好的鲁棒性。 The nonlinear and time-varying gassing lithium battery model motioned in reference [1] had two main characteristics: the model considered the phenomenon of gassing in the battery to extend its application to the critical situation when SOC was over 85%; the model considered the dynamic change of system temperature and its effect on the system state variables. In view of this model, based on the related tentative data,the double Kalman filtering (DKF) algorithm was used, which implemented the model parameter identification and the SOC online estimation simultaneously. The bench test and real vehicle experiment results indicate that this algorithm may online estimate SOC accurately both in non-critical condition and critical condition (error of estimation less than 4%), and has a better robustness to the SOC error of the initial value.
出处 《电源技术》 CAS CSCD 北大核心 2011年第12期1507-1510,共4页 Chinese Journal of Power Sources
基金 上海市重点学科项目资助(B303) 同济大学中德学院AVL新型车辆动力系统基金项目
关键词 锂电池Gassing模型 参数辨识 SOC估计 双Kalman滤波 Li-ion battery gassing model parameter identification SOC estimation dual Kalman filtering
  • 相关文献

参考文献7

  • 1ALVIN J S, CRAIG F, PRITPAL S,et al. Determination of state-of- charge and state-of-health of batteries by fuzzy logic methodology [J]. Journal of Power Sources, 1999, 80: 293-300.
  • 2PENG J C, EBERHART R. Battery packs state of charge estimator design using computational intelligence approaches [C]//IEEE international conference on human intelligence, 2000:173-177.
  • 3PILLER S, PERRIN M, JOSSEN A. Methods for state-of-charge determination and their application[J].Journal of Power Sources, 2001, 96(1): 113-120.
  • 4United States Idaho National Engineering & Environmental Lab boratory. Freedom CAR Battery test manual for power-assist hybrid electric vehicles[R]. Washington D C: U S Department of Energy, 2O03.
  • 5GREGORY L P. Extended kalman filtering for battery management systems of LiPB-based HEV battery packs, part 3, State and parameter estimation[J]. Journal of Power Sources, 2004, 134: 277-292.
  • 6周苏,胡哲,陈凤祥,张传升.基于析气现象的锂电池系统建模[J].电源技术,2010,34(2):134-138. 被引量:12
  • 7GOODWIN G C,孙贵生.自适应滤波、预测与控制[M].北京:科学出版社,1992:202-209.

二级参考文献14

  • 1张幸,杨伟民,李纲园.智能化电池充电装置的研究[J].上海理工大学学报,2004,26(4):381-384. 被引量:13
  • 2林成涛,王军平,陈全世.电动汽车SOC估计方法原理与应用[J].电池,2004,34(5):376-378. 被引量:199
  • 3林成涛,陈全世,王军平,黄文华,王燕超.用改进的安时计量法估计电动汽车动力电池SOC[J].清华大学学报(自然科学版),2006,46(2):247-251. 被引量:97
  • 4BUMBY J R, CLARKE P H, FORSTER I. Computer modeling of the automotive energy requirements for internal combustion engine and battery electric-powered vehicles [J]. IEE proceedings A, 1985, 132(5): 265-279.
  • 5UNNEWEHR L E, NASAR S A. Electric Vehicle Technology[M]. US: John Wiley, 1982: 274-326.
  • 6United States Idaho National Engineering & Environmental Laboratory. Freedom CAR Battery test manual for power-assist hybrid electric vehicles[R]. Washington D C: U S Department of Energy, 2003.
  • 7CHAU K T, WU K C, CHAN C C. A new battery capacity indicator for lithium-ion battery powered electric vehicles using adaptive neuro-fuzzy inference system [J]. Energy Convergence and Management, 2004, 45(11/12): 1681-1692.
  • 8BLUM J, SPONHEIMER A, ZHOU S. Adaptive open-loop and closed-loop control apparatus for a fuel cell system and method therefore: Germany, WO2008034453 (A1) [P]. 2008-03-27.
  • 9PILLER S, PERRIN M, JOSSEN A.Methods for state-of-charge determination and their application [J]. Journal of Power Sources, 2001, 96(1): 113-120.
  • 10LINDEN D, REDDY T B. Handbook of Batteries [M]. 3rd ed, New York: McGraw-Hill, 2002.

共引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部