期刊文献+

考虑压电驱动元件布局的作动器拓扑优化设计 被引量:2

Topology optimization of actuators considering the distribution of piezoelectric driven components
下载PDF
导出
摘要 工程中常需要设计各种各样的作动器以满足一定的驱动要求。本文采用拓扑优化的方法设计以压电材料为驱动的作动器。通过拓扑描述方法和RAMP(Rational Approximation of Material Properties)材料插值模型相结合的建模方式,建立了压电驱动元件布局与柔性机构构型协同设计的优化模型;以电压的作用下作动器在某一方向的输出位移最大为目标,设计压电驱动元件的最优布局以及与之相连接柔性机构的最优拓扑构型。文中算例的成功实现验证了本文方法的有效性。 It is desirable and important to des engineering applications. In this paper,a topo gna variety of actuators for certain driven requirements in ogy optimization method is presented for designing actuators driven by piezoelectric materials. By combining topology description function method and RAMP (Rational Approximation of Material Properties) material model, an optimization model simultaneously optimizing the distribution of piezoelectric driven component and layout of flexible mechanical structure is formulated. The goal is to design the layout of the flexible structure coupled to piezoelectric driven component and the position of the driven components that maximizes the output displacement in some specified direction. Numerical examples are presented to demonstrate the validity of the proposed approach.
出处 《计算力学学报》 EI CAS CSCD 北大核心 2011年第6期833-838,共6页 Chinese Journal of Computational Mechanics
基金 国家重点基础研究973计划(2011CB210304) 国家自然科学基金(10902019 10721062 90816025) 国家重大科技专项(2009ZX04014-034) 高等学校博士学科点研究基金(20090041110023)资助项目
关键词 拓扑优化 压电作动器 RAMP 拓扑描述函数 topology optimization piezoelectric actuators RAMP topology description function
  • 相关文献

参考文献16

二级参考文献92

共引文献162

同被引文献17

  • 1Williams J E. Superconducting Magnets for MRI[R]. Francis Bitter National Magnet Laboratory Massa- chusetts Institute of Technology Cambridge, Massa- chusetts 02139,1984.
  • 2R Damadian. Tumor detection by ouclear magnetic resonance [J]. Science,1971,171(976) :1151-1153.
  • 3L Ciobanu, A G Webb, C H Pennington. Magnetic resonance imaging of biological cells[J]. Progress in Nuclear Magnetic Resonance Spectroscopy, 2003,42 .- 69-93.
  • 4Behrooz Fateh. Modeling, Simulation and Optimiza- tion of a Micro-coil for MRI-CelI Imaging[D]. Uni- versity of Rostoek, 2006.
  • 5Bendsoe M P. Optimal shape design as a material dis tribution problem[J]. Structural and Multidisci pli-nar y Optimization ,1989,1(4) :193-202.
  • 6Li Q,Steven G P, Querin O M,et al. Shape and topol- ogy design for heat conduction by evolutionary struc- tural optimization[J]. International Journal of Heat and Mass Transfer,1999,42(17) :3361-3371.
  • 7Luo J,Gea H C. Optimal stiffner design for interior sound reduction using a topology optimization based approach[J]. JournaZ of Vibration and Acoustics, 2003,125 (3) : 267-273.
  • 8Diaz A, Sigmund O. A topology optimization method for design of negative permeability metamaterials[J]. Structural and Multidisciplinary Optimization, 2010,41 (2) : 163-177.
  • 9胡小伟,朱灯林.基于板梁扭转振动控制阻尼的压电片拓扑形状设计[J].河海大学学报(自然科学版),2008,36(1):112-116. 被引量:4
  • 10裴先茹,高海荣.压电材料的研究和应用现状[J].安徽化工,2010,36(3):4-6. 被引量:29

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部