期刊文献+

折板结构非线性弯曲分析的移动最小二乘无网格法 被引量:3

NONLINEAR BENDING ANALYSIS OF FOLDED PLATE STRUCTURES BY THE MOVING-LEAST SQUARE MESHFREE METHOD
原文传递
导出
摘要 提出了一种研究折板结构非线性弯曲行为的移动最小二乘无网格法。先将折板结构模拟成不同平面上平板的集合体,再基于冯.卡门的大挠度理论,使用一阶剪切变形理论和移动最小二乘近似先分析各平板的几何非线性行为,最后将通过修正的各板的非线性刚度矩阵叠加得到整个折板结构的非线性刚度矩阵,研究整个结构的几何非线性行为。由于摆脱了网格的束缚,该文方法可以避免网格扭曲引起的网格重构问题。文末通过几个算例将该文方法与使用壳单元的ANSYS有限元非线性分析进行对比,发现两者的计算结果接近。 A moving-least square meshfree method to study the nonlinear bending behaviour of folded plate structures is introduced in this paper.A folded plate is simulated as an assembly of flat plates that lie in different planes.Based on von Karman's large deflection theory,the first-order shear deformation theory(FSDT) and the moving-least square approximation,the geometric nonlinear behaviour of the flat plates is investigated.By supposing the modified nonlinear stiffness matrices of the flat plates,the nonlinear stiffness matrix of the entire structure is derived and the nonlinear bending problem of the structure can then be solved.Because the constraint from mesh is removed,the proposed method can avoid remeshing due to mesh disorder.Several examples are employed to show the accuracy of the proposed method.The results given by the proposed method are found to be close to those from ANSYS FEM nonlinear analysis using shell elements.
作者 彭林欣
出处 《工程力学》 EI CSCD 北大核心 2011年第12期126-132,共7页 Engineering Mechanics
基金 国家自然科学基金项目(11102044) 广西自然科学基金项目(桂科自0832053) 广西大学科研基金项目(X081011)
关键词 折板 非线性弯曲 移动最小二乘 无网格法 大挠度 folded plate nonlinear bending moving-least square meshfree method large deflection
  • 相关文献

参考文献17

  • 1Task Group of the Subcommittee on Masonry andReinforced Concrete of the Structural Division. Phase Ireport on folded plate construction [J]. Journal of theStructural Division, ASCE, 1963, 89(6): 365-406.
  • 2Gaafar I. Hipped plate analysis considering jointdisplacement [J]. Transactions of the ASCE, 1954, 119:743-784.
  • 3Yitzhaki D. Prismatic and cylindrical shell roofs [M].Haifa, Israel: Haifa Science, 1958.
  • 4Yitzhaki D, Reiss M. Analysis of folded plates [J].Journal of the Structural Division, ASCE, 1962, 88(5):107-142.
  • 5Whitney C S, Anderson B G, Birnbaum H. Reinforcedconcrete folded plate construction [J]. Journal of theStructural Division, ASCE, 1959, 85(8): 15-43.
  • 6Goldberg J E, Leve H L. Theory of prismatic folded platestructures [J]. International Association for Bridge andStructural Engineering, 1957, 17: 59-86.
  • 7Guha-Niyogi A, Laha M K, Sinha P K. Finite elementvibration analysis of laminated composite folded platestructures [J]. Shock and Vibration, 1999, 6(5/6): 273-283.
  • 8Bandyopadhyay J N, Laad P K. Comparative analysis offolded plate structures [J]. Computers & Structures, 1990,36(2): 291-296.
  • 9Lai Y, Wu Z, Zhu Y, Sun A. Geometrical non-linearanalysis of a simply-supported cross V-shaped foldedplate roof [J]. Thin-Walled Structures, 2000, 37(3):259-275.
  • 10Golley B W, Grice W A. Prismatic folded plate analysisusing finite strip-element [J]. Computer Methods inApplied Mechanics and Engineering, 1989, 76(2): 101-118.

二级参考文献96

  • 1张伟星.正交各向异性薄板计算新方法[J].安徽建筑工业学院学报(自然科学版),2000,8(2):9-12. 被引量:1
  • 2李卧东.[D].武汉: 华中理工大学,1998.
  • 3吴永礼.计算固体力学[M].北京:科学出版社,2003,4.258-297.
  • 4周瑞忠 缪圆冰 周小平.小波函数在无单元法中的应用.岩石力学与工程学报,2001,20(2):1604-1607.
  • 5缪圆冰 周小平 周瑞忠.无单元法的权函数与自适应影响半径.固体力学学报(计算力学专辑),2001,22:146-150.
  • 6周小平.[D].福州: 福州大学,2000.
  • 7T Belytschko, Y Y Lu, L Gu. Element-free Galerkin methods[J]. International Journal for Numerical Methods in Engineering, 1994, 37: 229-256.
  • 8Y Y Lu, T Belytschko, L Gu. A new implementation of the element free Galerkin method[J]. Computer Methods in Applied Mechanics and Engineering, 1994, 113: 397-414.
  • 9S Beissel. Nodal integration of the element free Galerkin method [J]. Computer Methods in Applied Mechanics and Engineering, 1996, 139: 49-74.
  • 10J K Chen. Completeness of corrctive smoothed for nonlined dymamic problem [J]. Computational Mechanics, 2000, 25: 273-285.

共引文献24

同被引文献41

引证文献3

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部