期刊文献+

基于MECST气固相间曳力模型的气体-颗粒团聚物流动特性的数值研究

Numerical Simulation of Flow Behavior of Gas and Particle Clusters Based on Drag Force Model with MECST
下载PDF
导出
摘要 由颗粒非均匀流动结构中各个尺度内能量守恒的角度出发,建立了气固两相流系统的整体和局部参数与气固相间曳力的相互关系,提出了基于颗粒悬浮输送能量最小(MECST)气固相间曳力模型;并将其应用于欧拉-欧拉双流体模型中,数值模拟循环流化床提升管内气体-颗粒-颗粒团聚物的流动特性。考察了时均颗粒相密度和颗粒质量流率沿径向的分布;颗粒浓度、提升管压降沿轴向的分布以及颗粒团聚物在提升管内的分布特性。模拟结果表明,颗粒相密度、颗粒质量流率以及提升管压降与实验结果相吻合;与能量最小多尺度气固相间曳力模型的颗粒浓度和颗粒拟温度的结果相比,MECST气固相间曳力模型得到的颗粒浓度较低,从而使颗粒拟温度减小。 The relationship between the parameters and the drag force of a gas-solid two-phase system was established on the basis of multi-scale energy conservation in the inhomogeneous flow of particles.A modified drag force model with the minimal energy consumption for suspending and transporting(MECST) was proposed.By application of the modified drag force model with MECST to the Euler-Euler two-fluid model,the flow behaviors of gas,particles and particle clusters in a circulating fluidized bed riser was numerically simulated.The distributions of the time-averaged solid phase density and the particle mass flow rate along radial direction,and the distributions of the particle concentration,the riser pressure drop and the particle clusters along the axial direction were observed.Compared with the results obtained by energy-minimization multi-scale drag force model,the particle concentration obtained by the modified drag force model with MECST could be reduced,which led to the low particle granular temperature.
出处 《石油化工》 CAS CSCD 北大核心 2011年第12期1308-1315,共8页 Petrochemical Technology
关键词 提升管 欧拉-欧拉双流体模型 颗粒悬浮输送能量最小曳力模型 颗粒团聚物 数值模拟 riser Euler-Euler two-fluid model drag force model with the minimal energy consumption for suspending and transporting particle cluster numerical simulation
  • 相关文献

参考文献17

  • 1刘清华,杨朝合,赵辉,刘熠斌.变径提升管内颗粒流动特性的研究[J].石油化工,2009,38(1):40-45. 被引量:8
  • 2刘会娥,魏飞,杨艳辉,金涌.FCC提升管内粒径分布对颗粒混合行为的影响[J].石油化工,2002,31(4):274-278. 被引量:8
  • 3Yang Ning, Wang Wei, Li Jinghai. CFD Simulation of Concurrent- Up Gas-Solid Flow in Circulation Fluidized Beds with Structure- Dependent Drag Coefficient [J]. Chem Eng J, 2003, 96 (1/3): 71 -80.
  • 4Qi Haiying, Li Fei, Xi Bing, et al. Modeling of Drag with the Eulerian Approach and EMMS Theory for Heterogeneous Dense Gas-Solid Two-Phase Flow [J]. Chem Eng Sci, 2007,62 ( 6 ) : 1670 - 1681.
  • 5Jiradilok V, Gidaspow D, Damronglerd S. Kinetic Theory Based CFD Simulation of Turbulent Fluidization of FCC Particles in a Riser[ J]. Chem Eng Sci, 2006,61 (17) :5544 - 5559.
  • 6Wang Wei, Li Jinghai. Simulation of Gas-Solid Two-Phase Flow by a Multi-Scale CFD Approach : Extension of the EMMS Model to the Sub-Grid Level [J]. Chem Eng Sci, 2007,62 ( 1/2 ) : 208 - 231.
  • 7Beetstra R, van der Hoef M A, Kuipers J A M. Numerical Study of Segregation Using a Newdrag Force Correlation for Polydisperse Systems Derived from Lattice-Boltzmann Simulations [J]. Chem Eng Sci, 2007,62 (1/2) : 246 - 255.
  • 8李静海,郭慕孙,Lothar Reh.循环流化床能量最小多尺度作用模型[J].中国科学(B辑),1992,B(11):1127-1136. 被引量:5
  • 9李静海 董元吉 郭幕孙.颗粒-流体两相流数学模型多尺度作用模型和能量最小方法[J].化工冶金,1988,9(1):4-17.
  • 10Li Jinghai, Kwauk M. Particle-Fluid Two-Phase Flow: The Energy-Minimization Multi-Scale Method [M].北京:冶金工业出版社,1994:23-40.

二级参考文献14

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部