期刊文献+

基于协同进化机制的欠采样方法 被引量:1

Under-sampling method based on cooperative co-evolutionary mechanism
原文传递
导出
摘要 针对非平衡数据集分类中"少数类样本精度难以提高"这一瓶颈问题,提出了一种基于协同进化机制的欠采样方法.此方法将少数类样本与多数类样本划分为两类种群,采用种群协同进化原理,利用提出的动态交叉变异算子自适应协同进化过程,实现种群间自动调节和自动适应.仿真试验结果表明,此采样方法增强了局部随机搜索能力,改善了种群的分布特性,加强了算法的全局收敛能力,在不降低多数类样本分类性能的基础上有效提高了少数类样本的精度.与其他经典重采样方法相比,本文办法抗噪能力好,具有更强的鲁棒性. For the bottleneck of improving the accuracy of minority class samples within the paradigm of imbalanced datasets,a novel under-sampling method based on the cooperative co-evolutionary mechanism was presented in this paper.During the employment of the method,the majority and the minority samples were divided into two populations,which adopted the cooperative co-evolutionary mechanism,dynamically adaptive crossovers and mutation operators to automatically adjust the evolution process within populations.Simulation results prove that the method enhances the capacity of local search,improves the distribution characteristics of populations and strengthens the capacity of global convergence.Moreover,the method notably improves the accuracy of the minority samples without degrading that of the majority ones.Compared to other classical resampling methods,the method shows good noise immunity with more powerful robustness.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2011年第12期1550-1557,共8页 Journal of University of Science and Technology Beijing
基金 国家高技术研究发展计划重大专项(2009AA01403) 国家自然科学基金资助项目(61003260 60875029 61070101)
关键词 非平衡数据集 分类 采样 协同进化 自适应算法 imbalanced datasets classification sampling cooperative co-evolution adaptive algorithms
  • 相关文献

参考文献14

  • 1Japkowicz N, Stephen S. The class imbalance problem: a system atic study. Intell Data Anal, 2002, 6(5): 429.
  • 2Drummond C,Hohc R C. C4.5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling // Workshop on Learning from lmbalanced Datasets 11, ICML. Washington DC, 2003.
  • 3Yen S J, Lee Y S. Under-sampling approaches for improving prediction of the minority class in an imbalanced dataset. Lect Notes Control lnf Sci, 2006, 344:731.
  • 4Kim M S. An effective under-sampling method for class imbalance data problem//Proceedings of Sth International Symposium on Advanced Intelligent Systems. Sokcho, 2007:287.
  • 5Liu X Y, Wu J X, Zhou Z H. Exploratory under-sampling for class-imbalance learning. IEEE Trans Syst Man Cybern Part B, 2009, 39(2) : 539.
  • 6Garcia-Pedrajas N, Hervas-Martfnez C, Munoz-Perez J. COVNET: a cooperative coevolutionary model for evolving artificial neural networks. IEEE Trans Neural Networks, 2003, 14 (3) : 575.
  • 7Harik G R, Lobo F G, Goldberg D E. The compact genetic algorithms. IEEE Trans Evol Comput, 1999, 3(4) : 287.
  • 8Whitley D, Kauth J. GENITOR: a different genetic algorithm // Proceedings of the Rocky Mountain Conference on Artificial Intelligence. Denver, 1988:118.
  • 9Kubat M, Matwin S. Addressing the curse of imbalanced training sets: one-sided selection // Proceedings of the 14th International Conference on Machine Learning. San Fransisco, 1997:179.
  • 10Bradley A P. The use of the area under the roc curve in the eval- uation of machine learning algorithms. Pattern Recognit, 1997, 30(7) : 1145.

同被引文献13

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部