摘要
对任意正整数n,设a(n)表示不小于n的最小m阶乘部分.b(n)表示不超过n的最大m阶乘部分,研究了上部阶乘a(n)及下部阶乘b(n)部分数列,采用初等及解析的方法,给出了2个有趣的渐近公式,在所得的定理的基础上,研究了数列{Sn(n)/In(n)},{Kn(n)/Ln(n)},{Sn(n)-In(n)},{Kn(n)-Ln(n)}的敛散性.
Let n be a positive integer,a(n) be the smallest m factorial number greater than or equal to n;and b(n) be the largest m factorial number less than or equal to n.The smallest inferior factorial part a(n) and the largest Superior factorial part b(n) of integer n are studied by using the elementary and analytic methods.Two interesting asymptotic formulas for them are given on the basis of theorem1 obtained.Hence,{Sn(n)/In(n)},{Kn(n)/Ln(n)},{Sn(n)-In(n)},{Kn(n)-Ln(n)}.Its convergence and divergence are also studied.
出处
《甘肃科学学报》
2011年第4期5-8,共4页
Journal of Gansu Sciences
基金
国家自然科学基金项目(10871123)
陕西省自然科学基金项目(SJ08A28)
关键词
下部及上部阶乘部分数列
均值
渐近公式
敛散性
inferior and superior factorial series
mean value
asymptotic formula
convergence and divergence