期刊文献+

Riordan矩阵的两种推广

Two Kinds of Generalization of Riordan Matrices
下载PDF
导出
摘要 对Riordan矩阵的概念进行推广,定义两类矩阵序列,并给出了两类矩阵序列对应的A-序列和Z-序列,利用两类矩阵序列讨论一些组合恒等式. After the generalization of the concept of Riordan matrices,two kinds of matrix sequence were defined:A-sequence and Z-sequence.On this basis,some combinatorial identities were discussed.
作者 周锐
出处 《甘肃科学学报》 2011年第4期26-29,共4页 Journal of Gansu Sciences
关键词 Riordan矩阵 组合数 组合多项式 组合恒等式 Riordan matrices combinatorial number combinatorial polynomial combinatorial identity
  • 相关文献

参考文献7

  • 1Shapiro L W,Getu S,Woaa W J,etal. The Riordan Group,Discrete Appl[J]. Math,1991,34(1-3) :239-239.
  • 2Rogers D G. Pascal Triangles,Catalan Numbers and Renewal Arrays[J]. Discrete Math, 1978,22(3):301-310.
  • 3Wang W. Generalized Riordan Arrays[J]. Discrete Mathematics, 2008,308:6 466-6 500.
  • 4Gi Sang Cheon, El-Mikkawy M E A. Generalized Harmonic Numbers with Riordan Arrays[J]. Journal of Number Theory, 2008,128:413-425.
  • 5Sprugnoli R. Riordan Arrays and the Abel-Gould Identity[J]. Discrete Math, 1995,142(1-3):213-233.
  • 6Sprugnoli R. Riordan Arrays and Combinatorial Sums[J]. Discrete Math,1994,132(1-3):267-290.
  • 7张慧婷,王军霞.有关Bell多项式与Jacobsthal数的恒等式[J].甘肃科学学报,2010,22(1):39-42. 被引量:3

二级参考文献12

  • 1W Wang, T Wang. Identities via Bell Matrix and Fibonaeci Matrix[J]. Discrete Appl. Math, 2008,156 (14):2 793-2 803.
  • 2N J A Sloane. Jacobsthal Sequence, From the On-Line Encyclopedia of Integer Sequences Web Resource[EB/OL]. http://www. research. att. com/njas/sequences/A001045.
  • 3G Y Lee,J SKim, S H. Cho. Some Combinatorial Identities via Fibonacci Numbers[J]. Discrete Appl. Math, 2003,130(3):527-534.
  • 4E W Weisstein.Lueas Sequence, From Math World-A Wolfram Web Resource[EB/OL]. http://www.mathworld.wolfram.com/LucasSequence, html.
  • 5M Tan,T Wang. Lah Matrix and Its Algebraic Properties[J]. Ars Cmbin,2004,70(3):197-108.
  • 6X Fu, X Zhou.On matrices Related with Fibonacei and Lueas Numbers[J]. Applied Mathematics and Computation, 2008,200 (1):96-100.
  • 7X Zhao,T Wang. The Algebraic Properties of the Generalized Pascal Matriees Associalated with the Exponential Families[J].Linear Algebra Appl,2000,318(1):45-52.
  • 8G S Cheon,J S Kim. Stifling Matrix via Pascal Matrix[J]. Linear Algebra Appl,2001,329(1-3) :49-59.
  • 9L.Comtet. Advanced Combinatorics[M]. D. Reidel Publishing Co. ,Dordrecht, 1974.
  • 10W Wang,T Wang. Matrices Related to the Bell Poiynomials[J]. Linear Algebra Appl,2007,422(1):139-154.

共引文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部