期刊文献+

一个简化Lorenz混沌系统的active同步控制 被引量:1

下载PDF
导出
摘要 本文首先分析了简化Lorenz混沌系统的基本动力学行为,然后利用active控制方法研究了该系统的同步问题,数值仿真表明的控制器的有效性.
作者 原冠秀
出处 《科技视界》 2011年第24期74-74,62,共2页 Science & Technology Vision
  • 相关文献

参考文献5

  • 1Chen M,,Han Z.Controlling and synchronization chaotic Genesio system via nonlinear feedback control[].Chaos Solitons Fractals.2003
  • 2Ahmet Ucar.Synchronization of the unified chaotic systems via active control[].Chaos Solitons Fractals.2006
  • 3Kehui Sun,,J.C.Sprott.Dynamics of simplified Lorenz system[].International Journal of Bifurcation and Chaos.2009
  • 4Lorenz E N.Deterministic non-periodic flows[].Journal of Atmospheric Science.1963
  • 5OE Rossler.An equation for continuous chaos[].Physics Letters.1976

同被引文献18

  • 1谌龙,王德石.陈氏混沌系统的稳定追踪控制[J].控制与决策,2007,22(8):935-938. 被引量:2
  • 2Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 64(8): 821-824.
  • 3Mahmoud E E. Complex complete synchronization of two nonidentical hyperchaotic complex nonlinear systems[J]. Mathematical Methods in the Applied Sciences, 2014, 37(3): 321-328.
  • 4Matheny M H, Grau M, Villanueva L G, et al. Phase synchronization of two anharmonic nanomechanical oscillators[J]. Physical Review Letters, 2014, 112(1): 014101.
  • 5Njah A N. Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques[J]. Nonlinear Dynamics, 2010, 61(1/2): 1-9.
  • 6Lü L, Luan L, Meng L, et al. Study on spatiotemporal chaos tracking synchronization of a class of complex network[J]. Nonlinear Dynamics, 2012, 70(1): 89-95.
  • 7Li C L. Tracking control and generalized projective synchronization of a class of hyperchaotic system with unknown parameter and disturbance[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(1): 405-413.
  • 8Sun K H, Sprott J C. Dynamics of a simplified Lorenz system[J]. International Journal of Bifurcation and Chaos, 2009, 19(4): 1357-1366.
  • 9Chen G, Lewis F L. Distributed adaptive tracking control for synchronization of unknown networked Lagrangian systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, 41(3): 805-816.
  • 10?elikovsky S, Chen G R. On a generalized Lorenz canonical form of chaotic systems[J]. International Journal of Bifurcation and Chaos, 2002, 12(8): 1789-1812.

引证文献1

二级引证文献29

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部