一个简化Lorenz混沌系统的active同步控制
被引量:1
摘要
本文首先分析了简化Lorenz混沌系统的基本动力学行为,然后利用active控制方法研究了该系统的同步问题,数值仿真表明的控制器的有效性.
出处
《科技视界》
2011年第24期74-74,62,共2页
Science & Technology Vision
参考文献5
-
1Chen M,,Han Z.Controlling and synchronization chaotic Genesio system via nonlinear feedback control[].Chaos Solitons Fractals.2003
-
2Ahmet Ucar.Synchronization of the unified chaotic systems via active control[].Chaos Solitons Fractals.2006
-
3Kehui Sun,,J.C.Sprott.Dynamics of simplified Lorenz system[].International Journal of Bifurcation and Chaos.2009
-
4Lorenz E N.Deterministic non-periodic flows[].Journal of Atmospheric Science.1963
-
5OE Rossler.An equation for continuous chaos[].Physics Letters.1976
同被引文献18
-
1谌龙,王德石.陈氏混沌系统的稳定追踪控制[J].控制与决策,2007,22(8):935-938. 被引量:2
-
2Pecora L M, Carroll T L. Synchronization in chaotic systems[J]. Physical Review Letters, 1990, 64(8): 821-824.
-
3Mahmoud E E. Complex complete synchronization of two nonidentical hyperchaotic complex nonlinear systems[J]. Mathematical Methods in the Applied Sciences, 2014, 37(3): 321-328.
-
4Matheny M H, Grau M, Villanueva L G, et al. Phase synchronization of two anharmonic nanomechanical oscillators[J]. Physical Review Letters, 2014, 112(1): 014101.
-
5Njah A N. Tracking control and synchronization of the new hyperchaotic Liu system via backstepping techniques[J]. Nonlinear Dynamics, 2010, 61(1/2): 1-9.
-
6Lü L, Luan L, Meng L, et al. Study on spatiotemporal chaos tracking synchronization of a class of complex network[J]. Nonlinear Dynamics, 2012, 70(1): 89-95.
-
7Li C L. Tracking control and generalized projective synchronization of a class of hyperchaotic system with unknown parameter and disturbance[J]. Communications in Nonlinear Science and Numerical Simulation, 2012, 17(1): 405-413.
-
8Sun K H, Sprott J C. Dynamics of a simplified Lorenz system[J]. International Journal of Bifurcation and Chaos, 2009, 19(4): 1357-1366.
-
9Chen G, Lewis F L. Distributed adaptive tracking control for synchronization of unknown networked Lagrangian systems[J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 2011, 41(3): 805-816.
-
10?elikovsky S, Chen G R. On a generalized Lorenz canonical form of chaotic systems[J]. International Journal of Bifurcation and Chaos, 2002, 12(8): 1789-1812.
二级引证文献29
-
1任伟,赵江涛.基于DSP的高压程控变压器优化设计[J].世界有色金属,2015,40(10):73-74.
-
2黄冠华,陆兴华.基于堆栈遍历的智能断电控制系统设计[J].电力与能源,2016,37(1):12-16.
-
3陈运胜.四轴遥控无人飞行器机身曲面磨削加工进刀控制[J].机械设计与制造工程,2016,45(2):80-84.
-
4钟建坤.基于大型网络监控的风电设备过压保护底层模块设计[J].电瓷避雷器,2016(2):145-150. 被引量:3
-
5陆兴华,范太霖,谢振汉.基于ARM的多模式智能控制嵌入式系统设计[J].计算机与数字工程,2016,44(4):667-670. 被引量:9
-
6陆兴华,甄汉健,段五星.嵌入式多模控制系统的容错性控制器设计[J].机械与电子,2016,34(4):62-65. 被引量:10
-
7李可,米捷.基于变结构PID的仿生机器人机电控制算法[J].河南工程学院学报(自然科学版),2016,28(2):32-37. 被引量:27
-
8朱敏,苏博.基于模糊蚁群收敛控制的通信网络路径优化[J].计算机仿真,2016,33(5):272-276. 被引量:1
-
9黄冠华,陆兴华.基于堆栈遍历的智能断电控制系统设计[J].电力与能源,2016,37(3):282-286.
-
10徐圣良.一种无人战斗机飞行轨迹的跟踪方法[J].西安工程大学学报,2016,30(4):464-470. 被引量:5
-
1陈文霞,田立新.不同系统之间的同步问题[J].江苏大学学报(自然科学版),2005,26(5):409-412. 被引量:1
-
2黄华.3D混沌系统的反同步与控制[J].新乡学院学报,2009,26(2):14-15.
-
3宁娣,阿磊.一类新3维连续混沌系统与Lorenz和Rssler系统的异结构同步[J].中南民族大学学报(自然科学版),2008,27(4):96-99. 被引量:3
-
4张成芬,高金峰,徐磊.分数阶Liu系统与分数阶统一系统中的混沌现象及二者的异结构同步[J].物理学报,2007,56(9):5124-5130. 被引量:33