摘要
分别记Z(p)和Zp为整数环Z的p-局部化和p-完备化,那么我们有自然的含入映射Z(p)→Zp.令S2n-1(p)为p-局部化的2n-1维球面,令B2n(p)为一个p-局部化空间,满足S2n-1(p)=~ΩB2n(p),那么我们有H*(B2n(p),Z(p))=Z(p)[u],其中u的度数为2n.对于B2n(p)的任意一个自映射f,我们定义f的度数为k∈Z(p)满足f*(u)=ku.运用整值多项式理论,我们证明存在B2n(p)的一个度数为k的自映射当且仅当k在Zp中是一个n次幂.
出处
《中国科学:数学》
CSCD
北大核心
2011年第12期1035-1041,共7页
Scientia Sinica:Mathematica