期刊文献+

新型无镍β型钛合金超弹性的研究 被引量:1

Study on super-elasticity of new β-type titanium alloys without Ni
原文传递
导出
摘要 采用钛合金d电子理论设计超弹性钛合金。采用水冷铜坩埚电弧熔炼的方法制备铸锭,经均匀化、冷轧和退火处理后,使用XRD和TEM分析退火后合金相组成,使用U型法测试超弹性。结果表明,Ti-24Nb-4Zr合金经800℃退火后具有优良的超弹性,U型法测试加载3.76%应变在卸载后可以完全回复。Sn具有强烈降低Ms点的作用,使得Ti-24Nb-2Zr-2Sn合金获得稳定的室温β相。300℃退火生成的ω相能够避免塑性变形过早发生,提高Ti-24Nb-2Zr合金的超弹性。但其同样阻碍β相的应力诱发马氏体转变,使得Ti-24Nb-4Zr合金经300℃退火获得的超弹性低于800℃退火获得的结果。 Titanium alloys with super-elasticity were designed by d-electron alloy design theory.Ti-Nb-Zr and Ti-Nb-Zr-Sn alloy ingots were arc-melted in a water-sealed copper crucible.Then,the ingots were homogenized,cold rolled and finally annealed.Phase constitution of the annealed alloys was analyzed by utilizing X-ray diffraction(XRD) scanning electron microscopy(SEM) and transmission electron microscopy(TEM).The super-elasticity of the alloys was measured by U bending tests.Ti-24Nb-4Zr alloy show,excellent super-elasticity that fully recovery is obtained in U bending test with applied strain of 3.76%.The addition of Sn can strongly reduce Ms temperature,so that stable β phase is obtained at room temperature in Ti-24Nb-2Zr-2Sn alloy.The ω phase,which forms during annealing at 300 ℃,can restrain plastic deformation occurring,thus super-elasticity of Ti-24Nb-2Zr alloy increases.Meanwhile,it hinders stress-induced martensite transformation.This effect causes that Ti-24Nb-4Zr alloy annealed at 300 ℃ shows lower super-elasticity than the alloy after annealing at 800 ℃.
出处 《材料热处理学报》 EI CAS CSCD 北大核心 2011年第12期23-28,共6页 Transactions of Materials and Heat Treatment
关键词 钛合金 超弹性 退火 titanium alloy super-elasticity annealing
  • 相关文献

参考文献24

  • 1Long M, Rack H J. Titanium alloys in total joint replacement-a materials science perspective[ J]. Biomaterials, 1998,19 : 1621 - 1639.
  • 2周宇,杨贤金,崔振铎.新型医用β-钛合金的研究现状及发展趋势[J].金属热处理,2005,30(1):47-50. 被引量:40
  • 3孙敬,崔振铎,朱胜利,杨贤金.生物医用植入钛及钛合金的力学性能研究及进展[J].金属热处理,2005,30(9):59-62. 被引量:16
  • 4樊亚军,曹继敏,王卫民,陈志宏.医用植入物β型钛合金的力学相容性[J].金属热处理,2010,35(12):24-28. 被引量:8
  • 5Duerig T, Pelton A, Stockel D. An overview of nitinol medical applications[ J]. Materials Science and Engineering A, 1999,273 - 275 : 149 - 160.
  • 6Morgan N B. Medical shape memory alloy applications-the market and its products[ J]. Materials Science and Engineering A,2004,378:16 -23.
  • 7Niinomi M. Recent metallic materials for biomedical applications[ J]. Metallurgical and Materials Transactions A,2002,33:477 -486.
  • 8Okazaki Y, Ito Y, Kyo K,et al. Corrosion resistance and corrosion fatigue strength of new titanium alloys for medical implants without V and Al[ J ]. Materials Science and Engineering A, 1996,213 : 138 - 147.
  • 9Kuroda D, Niinomi M, M. Morinaga, et al. Design and mechanical properties of new 13 type titanium alloys for implant materials [ J ]. Materials Science and Engineering A, 1998,243:244 - 249.
  • 10Baker C. The shape-memory effect in a titanium-35wt% niobium alloy[ J]. Metal Science Journal, 1971,5:92 - 100.

二级参考文献78

  • 1周宇,杨贤金,崔振铎.新型医用β-钛合金的研究现状及发展趋势[J].金属热处理,2005,30(1):47-50. 被引量:40
  • 2付艳艳,于振涛,周廉,王克光.显微组织对Ti-13Nb-13Zr医用钛合金力学性能的影响[J].稀有金属材料与工程,2005,34(6):881-885. 被引量:6
  • 3鲍利索娃EA 陈石卿(译).钛合金金相学[M].北京:国防工业出版社,1986..
  • 4Eisenbarth E, Velten D, Mtiller M, et al. Biocompatibility of β-stabilizing elements of titanium alloys [J]. Biomaterials ,2004,25 : 5705-5713.
  • 5Geetha M, Singh A K, Asokamani R, et al. Ti based biomaterials, the ultimate choice for orthopaedic implants-A review [ J ]. Progress in Materials Science ,2009,54 ( 3 ) : 397 425.
  • 6Song Y, Xu D S, Yang R, et al. Theoretical study of the effects of alloying elements on the strength and modulus of β -type bio-titanium alloys [ J ]. Materials Science Engineering A, 1999, 260 ( 1/2 ) : 269 -274.
  • 7Sakaguchi N, Niinomi M ,Akahori T, et al. Relationships between tensile deformation behavior and microstructure in Ti-Nb-Ta-Zr system alloys [J]. Materials Science Engineering C,2005,25 ( 3 ) : 363-369.
  • 8Kuroda M,Niinomi M ,Morinaga M ,et al. Design and mechanical properties of new β type titanium alloys for implant materials [J]. Materials Science Engineering A, 1998,243 (1-2) : 244-249.
  • 9Nag S, Banerjee R,Fraser H. Microstructural evolution and strengthening mechanisms in Ti-Nb-Zr-Ta, Ti-Mo-Zr-Fe and Ti-15Mo biocompatible alloys[J]. Materials Science and Engineering C ,2005,25(3) : 357-362.
  • 10Lee W S, Lin C F, Chen T H, et al. Correlation of dynamie impact properties with adiabatic shear banding behaviour in Ti-15Mo-SZr-3Al alloy [ J ]. Materials Science Engineering A,2008,475 ( 1-2 ) : 172-184.

共引文献61

同被引文献3

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部